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Introduction and Summary 

Usually a theoretical study of longitudi- 
nal instabilities implies the concept of a 
closed beam made of identic and equidistantly 
spaced bunches. As a matter of fact, such an 
azimuthal symmetry of the beam can be viola- 
ted. It occur either because of 
bunch-to-bunch spread of parameters (i j or 
because of partial orbit filling by the beam 
(ii). The latter is peculiar to large pro ton 
synchrotrons of the UNK-type due to the in- 
jection schemer accepted. The paper presents 
an approach to the problem of longitudinal 
instabilities in this case. The features pe- 
cuIiar to beam oscillation eigenmodes are 
discussed. The results of computations f 0 r 
the UNK are enclosed. 

Haior Set of Eauations 

The beam-excited electric field can be 
written as where t is the 
time, 

E Ek(a)e’k*-lRt, 
Q is the frequency of coherent oscilla- 

tions, 6 is the azimuth in co-rotating coor- 
dinate system (namely, r9 = B-ost, 8 is the 
generalized azimuth around the ring in the 
laboratory system, 10~ is the angular velocity 
of a synchronous particle). The amplitude of 
the electric field harmonic Ek(n) is directly 
proportional to the beam current harmonic 

Jk(n): 

Ek(R)= - Zk(t2)Jk(R) / L, (1) 

where L is the orbit length, zk(Rf is the 
longitudinal impedance of the vacuum chamber. 
The amplitude of beam current harmonic can be 
presented as a sum over the contributions 
from all the bunches: 

Jk j 
= I: J(L)exp(-ikb 

j 
), 

where ej is the coordinate of the j-th bunch 
center, Jp ) is the current harmonic of the 
j-th bunch calculated in the coordinate sys- 
tem attached to its center; the summation is 
performed over all the beam bunches. 

The field (1) causes the onset of time-de- 
pedent perturbations on the background of the 
initial steady-state inside-the-bunch partic- 
le distributions. Following papers Cl,21, one 
obtains an infinite set of equations in terms 
of bunch current perturbation harmonics JLj) 

J(j) a (jf 
= 

k k,f-,Ykk’ 
rn) (Zk, (Q)/k’) x (3) 

x t,exp[-ik/(6j,-9j)] JL;“, k’+ 0. 

The express.o s 
Integrals Y$if 

for the so called dispersion 
can be found elsewhere [i, 21. 

It seems evident, that the system (3) can 
be rewritten in terms of the beam harmonics 

Jk [3]. But this form is less convenient in 
our case. The reason lies in the fact, that 
both Jij) and Y&i) can be almost independent 

of their subscripts, what we are going to ta- 
ke the advantage of below. 

The problem (3) can be hardly solved in 
1ts general form. Therefore let us introduce 
some simplifications: 

& The dispersion integral Y&li() can be en- 
panded in series in the multipoie excitati- 
ons. The individual multipoles are enci ted 
independently, provided the impedance is a 
sufficiently low-frepuncy one. The latter al- 
lows the use of the so called approximation 
of the uncoupled multipoles: 

(j) 
‘kk’= 

; y(j,m’)z y(.i,m) 
m,e-r kk’ kk’ ’ (4) 

where m is the usual multipole index. From 
now on we take m>0 imposing no restrictions 
on the generality. 

Whithin the frames of.the above approxima- 
tion the quantities Yiij acquire the follo- 
wing properties: 

(j) 
“‘k, -k t 

m (j) 
=(-1) Ykk, 

(5.3) 

Hereupon one arrives at a simple coup1 ing 
condition for the curruent harmonics: 

(j) 

J-k 
I (-lim J;j’. (5b) 

(The approximate equalities (51 become the 
enact ones provided the synchroton oscillati- 
ons are taking place in a symmetric potential 
well. 1 

&. Let the impedance zk(n) be sufficiently 
nontrivial only for the harmonics numbered 
within the range: 

k = ?: ( ko+ Ak 1. (6) 

In this case one should take into account on- 
ly that harmonics of current which are numbe- 
red by the subscripts of the same range. 
Simultaneously, Eqs. (5) allow the reduction 
of the problem to the positive values of 
k,k’. We also suppose that 

k, Aeb’ 1, 
-” 

Ak Aeb<< 1, 

where A8b is the trpical length of a bunch 
along the azimuth. It is this condition that 
results in a weak dependence of the puantiti- 

of their subscripts. One can see from 
that the values of bunch current har- 

monics are also kept almost unchanged, provi- 
ded their index ranges in bounds (6). There- 
fore it is sufficient to retain the only 
equation, e.g. for the harmonic numbered by 
ko>O: 

J(J) = 5, ajj,(Q) J’j”, (8a ) 

ajj,(n)= Y 
(j) 

(nj G( ej,-ej ,Q 1, (8b) 
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Zk(sl) 
6(6,5-t)= : 7 exp(-ike), k+0, (8~) kr-m 

where to simplify the notataions we substitu- 
te “ii) --* J(j), y(J) 

koko 
3 y(j). 

Identic Bunches w’ith Different PODulatiOn 

The solution of the problem involved beco- 
mes easier if the bunches are supposed to 
differ by their population only. In this case 
all the dispersion integrals take the form 

Y(j)(SW = VjY(s-u, (9) 

where vj is the relative population of the 
j-th bunch; by definition max(v.1 = i. The 
dispersion equation of instadili y i can be 
written as 

i = Y(n) ).c,(fi), (i0) 

where p,, is the n-th eigenvalue of the prob- 
lem: 

(j) (j’) 
FJ = ~,v~GW~,-@~ ,Q)J 

J 
(11) 

The corresponding eigenvectors define the 
set of linearly-independent (but not alwars 
mutually orthogonal) beam oscillation modes. 
It is evident that the total number of these 
modes coincides with the amount af the bun- 
ches located around the orbit. 

Eq. (i0) can be studied by the well-known 
threshold plot technique [23, The quantity 
pn is interpreted as the effective impedance 
of the n-th mode. The whole system is stable 
when all the points f/p,, are located either 
beyond the region encircled by the threshold 
curve Y( ReQ+iB ) on the comlex plane Y, or 
directly on the ReY = 0 axis. The stability 
criterion can be easily reformulated in terms 
of the impedance plane 2 + Y-l, which we em- 
play in what fallows. 

Let us study some general feature5 of the 
solutions of the problem (ii). 

Usuallr one gets Ifll << aka,. Therefore 
G(C), 0) CL G(r9,0) and eigenvalues p ( as well 
a5 eigenvectors f 1 are no more frequency Q 
dependent. From the physical paint of view 
the latter means that Robinson-type instabi- 
lities l-41 became insufficient. Now G = -G* 
and the quantities 

(y ,f) and (p’=- p*, 
-P + 
J’=J*) 

will present a pair of eigenvalues and eigen- 
vectors of the problem involved. Therefore: 

a) eigenvalues j.4 are srmmetric with res- 
pect to the imaginary axis. Each pair of sym- 
metric EC, Rep # 0 corresponds to the mutuallr 
complement (otherwise, complex conjugated) 
beam oscillation modes. Any of these pair ma- 
des can become unstable either before 
(Rep < 0) or after (Rep > 0) gamma-transiti- 
on. (One should take into account the one-si- 
ded shape of the threshold plats under 
assumption (4). ) 

b) Purely imaginary )*‘s stand for the (al- 
mast)stable ( up to the Robinson effect 

[4] ) modes. The latter are always characte- 
rized by either in-phase or counter-phase OS- 
cillations of any two adjacent bunches: for 
r( = -p f=?*. Th ere is at least one such 

mode in a beam consisting of an odd number of 
bunches. 

Let us consider one important and 
well-known case - the azimuthally-symmetric 
beam : 

v.= 1, Gj= - (2n/M) j , (12) 
J 

where M is the total number of bunches. Now 
problem (ii) can be solved in analytics. It8 
eigenvectors constitute an or thoganal and 
normalized to unity coordinate basis: 

J(j)3: M-i/2 
n 

exp(-2ninj/M), (13) 

<f If,,> = Bnn,= 
0, n*n’ 
i, n=nl 

and define M normal modes of the coup led 
bunch oscillations. They can be discriminated 
by the value of synchrotron frequency phase 
shift between two adjacent bunches, 
sly = Pnn/M. The eigenvalue of the n-th mode 
can be found as 

p(“)=M E z (n)/(n+lM), n+lM+0. (14) n 1=-a n+lM 

This particular solution of 
issue can help us arrive 
conclu5ion about the location 
the complex plane. Indeed, 
that the initially symmetric 
looses population of any of it 
arbitrary way, same of the 

. . 

the problem at 
at an important 
of pn values on 

let us suppose 
beam partially 
5 bunches in an 

bunches being _ knocked away altogether. Nevertneless, the 
newly-formed beam eigenvectors can be expan- 
ded in series in basis (13) vector compa- 
nents, while its eigenvalues pn/ can be pre- 

auadric bilinear functional induced sented as 
by matrix 
sufficien 
(13), one 

(11) of the initial beam. Making 
use of orthogonality condition 

readily arrives at 

where the 
normal 

f3 (0) 
n n’n’n I z Z,,,‘in 

n 
(151 

summation is performed over all the 
modes (131, (14); 05 Znl !!ii, 

05 EnJn 51. 
Ep.(15) has the fallowing geometrical in- 

terpretation: any of ~~~ eigenvalues lies in- 
side the boundaries of the minimal (le- 
ast-area) convex poligan circumscribed around 
all the points ~6”) of the complex plane ti. 
When the initial beam (12) is stable, all the 
point5 ~6” ) are located inside the stability 
region of the threshold plot on Z-plane. The- 
refore all the points fin/, representing the 
derivative beam, would also belong to the 
stable area by virtue of (15). Thus, one ar- 
rives at the general conclusion: the beam 
,which is made nonsymmetric either by partial 
lass af same of its bunch population or(and) 
by total knack-out of arbitrary bunches, will 
never be mare unstable than the initial sym- 
metric beam. 

Instabilitu Threshold Comoutations 

To proceed to computer CalculatiOnS let US 
take the narrow-band cavity impedance 
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-1 
zkcQ)= Rshx l-i 

(kws+R)‘-r; 

L 
2(kws+Q) Aw 1 ’ 

(lb) 
J 

where Rsh is the coupling (shunt) impedance, 
B)~ is the resonant frequency, Ae, is the cavi- 
ty bandwidth. In this case sum (88) can be 
easily summed up to yield 

I 4nR5 hBw 

G(*,*) ,o<&gnn = WI-w2 x (17) 

exp(-ik,6) 1 l-exp(-2r(ik, ) J -(f-P 2) , I 
~(+2n,Q)=G(e,fi), WI 2=+~w~-Au2-iAu. 

, 
k *,2=(w,,2- nj/us. 

Eigenvalues p&O) for the arimuthally-sym- 
metric beam take the form: 

JO) SE 
4nRShAv 

x 
n wl -02 

(18) 

exp(-2ni(k,-n)/M) 
.a. 

1 i-exp(-2ni(k,-n)/MIJ- 

- (l+ 2);. 

The UNK beam will consist of the sequence 
of batches bunched by RF frequency Q% 
(Q - harmonic number) and separated by time 
intervals. The number of bunches at the in- 
jection flat-top of the 1st stage will be as 
great as H 3 (lt12). 10’>>1_ Therefore the di- 
rect computer solution of the problem (11) is 
hardly possible because of its great dimensi- 
on. But this complication can be easily over- 
come. Indeed, if one finds an integer K > 0 
for which 

K I#, -lprs]/~~s<<l,l is an integer, t 19) 

then J(j+K) c( J(j). Therefore the dimension 
of problem (ii) can be reduced to N = M/K, 
the latter means that each K adjacent bunches 
are formally treated as a single one. The 
eigenvalues we are interested in (namely, the 
largest by the modulus ones) would practical- 
ly coincide. 

Fig. 1 presents the results of computations 
illustating the method convergence. We study 
the single batch of bunches in the 1st stage 
of the UNK ( M = 10’ 
ratting with the akcelerating 

q = 1.4. 10’ ;;,,iy:;; 

( Bar/w0 = 2. l0-q, (wo-grS)/Ao = 0.75 ). The 
parameter plotted is the matrix dimension N. 

Fig.2 shows the results of computations of 
the effective impedances, i, e. eigenvalues 
)4n, which correspond to the operation mode of 
the UNK accelerating cavities. The injection 
flat-top is studied. The beam and cavities 
parameters are taken to be: Em70 GeV, 
Jo=1.4 A, RSh=i6X0. 25-b MOhm, 
Ap/p,‘+2.1. 10-‘, ~80b/2~r=0.54 Figures ii12 
denote the number of consequent batches on 
the orbit, their minimal separation being 100 
empty buckets, Curve 13 is the plot of eigen- 
values MAO) for the symmetric beam filling 
the whole orbit. One can easily find out that 
the nodes of the bracken lines is12 u 13 are 
In fact satisfying condition (15). The tres- 
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hold curves far the dipole and quadrupole as- 
cillations (m-f, 2 ) are plotted by the conti- 
nuous curves. The stable area lies near the 
coordinate origin and in the left half-plane. 
It can be seen, that all the bunch-to-bunch 
coupled modes of dipole oscillations of 1 and 
2 consequent batches are located below the 
instability threshold. The quadrupole ascil- 
lations will become unstable provided 9 or 
more batches are circulating an the orbit. 
The hi qher modes of multipole oscillations 
(m 2 3) are stable. To provide the beam lo?zi- 
tudinal stability a special feedback system 
is being developed. 
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