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Introduction and Summary

Usually a theoretical study of 1longitudi-
nal instabilities implies the concept of a
closed beam made of identic and equidistantly
spaced bunches. As a matter of fact, such an
azimuthal symmetry of the beam can be viola~
ted. It scceur either because of
bunch-to~-bunch spread of parameters (i) or
because of partial orbit filling by the beam
(ii}. The latter is peculiar to large proton
synchrotrons of the UNK-tupe due to the in-
jection schemes accepted. The paper presents
an approach to the problem of longitudinal
instabilities in this case. The features pe-
culiar to beam oscillation eigenmodes are
discussed. The results of computations for
the UNK are enclosed.

Major Set of Eguations

The beam-excited electric field can be
written as Ep(R)eikd-it  yhere t is the
time, Q is the frequency of coherent oscilla-
tions, ® is the azimuth in co-rotating coor-
dinste system (namely, O = B-wgt, © is the
generalized azimuth around the ring in the
laboratory system, w; is the angular velocity
of a synchronous particle). The amplitude of
the electric field harmonic Eg(Q) is directly

proportional to the beam current harmonic
T ()

Ek(n)== - ZR(Q)JR(Q) / L, (1)
where L is the orbit length, Zy(Q) is the

longitudinal impedance of the vacuum chamber.
The amplitude of beam current harmonic can be
presented as a sum over the contributions
from all the bunches:

(j)

J, =X
‘i k

K exp(—ikGJ), (2)

where GJ is the coordinate of the j-th bunch
center, Ji) is the current harmonic of the
j-th bunch calculated in the coordinate sys-
tem attached to its center; the summation is
perfaormed over all the beam bunches,

The field (i) causes the onsel of time-de-
pedent perturbations on the background of the
initial steadu-state inside-the-bunch partic-
le distributions. Following papers [i,2], one
obtains an infinite set of equations in terms
of bunch current perturbation harmonics Jﬁi)

[ hod (i)
9 § oyl

! k K/=-m KK’

(Q)(Zk,(Q)/k’) X (3)

(i’) ,
K , k73 @.

~ik’ -

X j';lexp[ ik/ (9, eJ,)] 3
The express%o?s for the so called dispersion
integrals ka; can be found elsewhere [1,2].

It seems evident, that the sustem (3) can
be rewritten in terms of the beam harmonics
Ji [31. But this form is less convenient in
our case. The reason lies in the fact, that
both J&J) and Y&&} can be almost independent
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of their subscripts, what we are going to ta-
ke the advantage of below.

The problem (3) can be hardly solved in
{ts genaral form. Therefore let us introduce
some simplifications:

a) The dispersion integral Y{j) can be ex-
panded in series in the multipole excitati-
ons. The individual multipoles are excited
independently, provided the impedance is a
sufficiently low-frequncy cne. The latter al-
lows the use of the so called approximation
of the uncoupled multipoles:

Y(.i) - (j,m’) (j,m)
k™ oo WTkke Kk («)
where m is the usual multipole indesx. From

now on we take mb>@ imposing no restrictions
on the generality.

Whithin the frames of the above approxima-
tion the Gguantities Y&ﬂ) acquire the follo-
wing properties:

() (i) () (j) m, ()
Yok, ok = ke Yok =V, e =00 Y
(5a)
Hereupon one arrives at a simple coupling

condition for the curruent harmonics:

i)
-3

-k J .

7 K

(-1) (5b)

(The approximate equalities (5) become the
exact anes provided the suynchroton oscillati-
ons are taking place in a symmetric potential
well. )

b) Let the impedance Zi({2) be sufficiently
nontrivial only for the harmonics numbered
within the range:

R =

=+

kot Bk ). (&)

In this case one should take into account on-
ly that harmonics of current which are numbe-

red by the subscripts o0f the same range.
Simultaneously, Egs. {(S5) allow the reduction
of the problem to the positive values of

K, k. We also suppose that
kA8 > 1 Ak A9, << { (7)
o b'\' 4 b ’

where A9y is the tupical length of a bunch
along the azimuth. It is this condition that
results in a weak dependence of the quantiti-
es Y(é2 of their subscripts. One can see from
Eq.(5 that the values of bunch current har-
monics are also kept almost unchanged, provi-
ded their index ranges in bounds (46). There-
fore it 1is sufficient to retain the anly
equation, e.g. for the harmonic numbered by

ko)oi

(J) -
s % s s ey 14U, (8a)

3’ JJ

(i)
a =Y (@) 6l e -9 0, (8b)
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z, ()

G(9, Q)= =

exp(~-ik®), k=0, {8¢)

where to simplifuy the notataions we substitu-
te 33 5 g0, vli) & v(j),
ko ' Tkokg
Identic Bunches with Different Population

The solution of the problem involved beco-
mes easier 1if the bunches are supposed to
differ by their population onlu. In this case
all the dispersion integrals take the form

(D)

Y Q) = VJY(Q), (?)
where vj is the relative population af the
i-th buneh; by definition max(v:) = 1. The
dispersion eguation of instalility can be
written as

1 = Y{) nn(Q), (19)
where M, is the n-th eigenvalue of the prob-
lem:

(Jj) (i)
MJ =X v G6(9. ,-0 ,Q0)J . (11)
v J J
The corresponding eigenvectors define the

set of linearly-independent (but not always
mutually erthogonal) beam oscillation modes.
It is evident that the total number aof these
modes coincides with the amount of the bun-
ches located around the orbit.

Eq.{(i®) can be studied by the well-known
threshold plot technique [2). The quantity
M is interpreted as the effective impedance
of the n-th mode. The whole system is stable
when all the points i/M, are located either
beyond the region encircled by the threshold
curve Y{ Re}+i@ ) on the comlex plane Y, or
directly on the ReY ® axis. The stability
criterion can be easily reformulated in terms
of the impedance plane Z ~ Y-!, which we em-
ploy in what follows.

Let us study some general features of
sglutions of the problem (11)}.

Usually one gets Q] << Akwg. Therefore
G(®, Q) 6(9,0) and eigenvalues M ( as well
as eigenvectors ) are no more frequency Q
degcendent. From the physical point of view
the latter means that Robinson-tupe instabi-
lities [4] become insufficient. Now G ~-G*
and the guantities

the

E-3

-+ -+
(M, 7)) and (M/=- M¥ J/=]*)
will present a pair of eigenvalues and eigen-
vectors of the problem involved. Therefore:

a) eigenvalues M are summetric with res-
pect to the imaginary axis. Each pair of sum-
metric m, Rem # ® corresponds to the mutually
complement (otherwise, complex conjugated)
beam oscillation modes. Any of these pair mo-
des can become unstable either before
(Rem € ®) or after (Rem > ©) gamma-transiti-
on. (One should take into account the one-si-
ded shape of the threshold plots under
assumption (4).)

b) Purely imaginary m’s stand for the (al-
most)stable ( up to the Robinson effect

{41 ) modes. The latter are always characte-

rized by either in-phase or counter-phase os-
cillations of any two adjacent bunches: for
M ~ M * There is at least one such

mode in a beam consisting of an odd number of
bunches.
LLet us
well-known
beam:

consider
case

one important and
the azimuthally-symmetric

v = 1, =

J

(12)

GJ - (2n/M) § ,
Now
Its
and

where M is the total number of bunches.
problem (11) can be solved in analytics.
eigenvectors constitute an orthogonal
normalized to unity coordinate basis:

(J -1/2
3 J)= M

n (13)

exp(-2mtinj /M),
@,nsn’

+ <>
‘(JnIJn,> = snn,s 1,n=n’

and define M normal modes aof the coupled
bunch oscillations. Thew can be discriminated
by the value of synchrotron frequency phase
shift hetween two adjacent bunches,
AY = 2an/M. The eigenvalue of the n-th mode
can be found as

H;o) E z

I=-e n

=M M(Q)/(n+1M), n+1M20.  (14)

+1

This particular solution of the problem at
issue can help us arrive at an important
conclusion about the location of M, values on
the complex plane. Indeed, let us suppose
that the initially symmetric beam partially
looses population of any of its bunches in an

arbitrary way, some of the bunches being
knocked away altogether. Nevertheless, the
newly-formed beam eigenvectors can be expan-

ded in series in basis (13) vector compo-
nents, while its eigenvalues mMp/ can be pre-
sented as quadric bilinear functional induced
by matrix (11) of the initial beam. Making
sufficient use of orthogonality condition
(13), one readily arrives at

(o)

n (15)

Mor=Bn T FoogMy 0 T 3L
where the summation is performed over all the
normal modes (13), (14); 8L Zns <4,

0L Fnhrpn 1.

Eq.(15) has the following geometrical in-
terpretation: any of M,s eigenvalues lies in-
side the boundaries of the minimal (le-
ast-area) convex poligon circumscribed around
all the points M§%) of the complex plane pm.
When the initial beam (12) is stable, all the
paints m§{®) are located inside the stability
region of the threshold plot on Z-plane. The-
refore all the points mu/, representing the
derivative beam, would also belong to the
stable area by virtue of (i3). Thus, one ar-
rives at the general conclusion: the beam
,which is made nonsummetric either by partial
loss aof some of its bunch population ar(and)
by total knock-out of arbitrary bunches, will
never be more unstable than the initial sym-
metric beam.

Instabili Thresho mputatiogons
To proceed to computer calculations let us

take the narrow-band cavity impedance
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[ (kusﬂ))z-wz]
Zk(ﬂ)= Rshx Li—-l mJ , (18)

where Rcp is the coupling (shunt) impedance,
wyg is the resonant frequency, Aw is the cavi-
ty bandwidth. In this case sum {(88) can be
easily summed up to yield

i 4ﬂRshAu
6(9,0) |, cogan * e, (17)
w exp(-ik ©)
x{ =t L o (41— 20},
\m‘—ﬁL—2ﬂ1kl 1—exp(—2ﬂ1k‘)J )

G(0s27,Q)=6(0,0), w, ,=tvu,-Aw -ile,

»

' 2 4 2" Q)/ms‘

»

Eigenvalues HSO) for the azimuthally-sum-

metric beam take the form:

4rR_ . Aw
(o) sh
M B e X (18)
n o -w,
xr w, [ sno Lexp(-Zﬂi(k,-n)/M) ]~
L"’,"iiL—2ﬂi(kl—n)/M 1—exp(-—2ni(kl—n)/M)J
3
- (1— 2)
;|
The UNK beam will consist of the sequence
of batches bunched by RF frequency qug

(q - harmonic number) and separated by time
intervals. The number of bunches at the in-
jection flat-top of the {st stage will be as
great as M = (1:12)-1@?>>»1. Therefore the di-
rect computer solution of the problem (11) is
hardly possible because of its great dimensi-
on. But this complication can be easily over-
come. Indeed, if one finds an integer K » @
faor which

Klmx-lqwsllqws<<i,1 is an integer, {(19)

then J(J+K) = J(J). Therefore the dimension
of problem (i1} can be reduced to N 2 M/K,
the latter means that each K adjacent bunches
are formally treated as a single one. The
eigenvalues we are interested in (namely, the
largest bu the modulus ones) would practical-
1y coincide.

Fig.1 presents the results of computations
illustating the method convergence. We study
the single batch of bunches in the 1st stage
of the UNK ( M= 10% , q = t.4-10" ), inte-
racting with the accelerating ravities
( Aw/wy = 2-10~", (wp-gQug)/Aw = .75 ). The
parameter plotted is the matrix dimension N.

Fig.2 shows the results of computations of
the effective impedances, i.e. eigenvalues
M, which correspond to the operation mode of
the UNK accelerating cavities. The injection

flat-top is studied. The beam and cavities
parameters are taken to be: E=70 GeV,
Jp=1.4 A, Rgp=1630. 25=4 MOhm,

Ap/ps=¢2.1~10‘3, QA0 / 2r=0@. 54 Figures {:12
denote the number of consequent batches on
the orbit, their minimal separation being 100
empty buckets. Curve 13 is the plot of eigen-
values n§°) for the symmetric beam filling
the whole orbit. One can easily find out that
the nodes of the brocken lines 1:12 wm 13 are
in fact satisfying condition (135). The tres-
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hold curves for the dipole and quadrupole os-
cillations (m=1,2) are plotted bu the conti-
tluous curves. The stable area lies near the
coardinate origin and in the left half-plane.
It can be sgen, that all the bunch-to-bunch
coupled modes of dipole oscillations of 1 and
2 consequent batchezs are located below the
instability threshold. The quadrupole oscil-~
lations will become unstable provided 9 or
mare batches are circulating on the orbit.
The higher mcdes of multipole oscillations
{m 2 3) are stable. To provide the beam 1dki-
tudinal stability a special feedback sustem
is being developsd.
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