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Amplitude growth due to random, correlated kicks

LEO MICHELOTTI and FRED MILLS
Fermilab®, P.O.Box 500, Batavia, [L. 60510

1 Introduction.

Historically, stochastic processes, such as gas scattering or stochastic cool-
ing, have been treated by the Fokker-Planck equation.1] In this approach,
usually considered for one dimension only, the equation can be considered as
a continuity equation for a variable which would be a constant of the motion
in the absence of the stochastic process, for example, the action variable,
I = ¢/2x {or betatron oscillations, where ¢ is the area of the Courant-Snyder
ellipse, ot energy in the case of unbunched beams, or the action variable for
phase oscillations in case the beam is bunched. A flux, ®, including diffusive
terms can be defined, usually to second order.

& = My F(I)+ MaOF/8] + -

M, and M, are the expectation values of of §7 and {(61)2 due td the individual
stochastic kicks over some period of time, T, long enough that the variance
of these quantities is sufficiently small. Then the Fokker-Pianck equation is
just

8F/81 + 88/8] = 0

In many cases, those where the beam distribution has already achieved its
final shape, usually Gaussian, it is sufficient to find the rate of increase of
(I} by taking simple averages over the Fokker-Planck equation.

At the time this work was begun, there was good knowledge of the second
moment for general stochastic processes due to stochastic cooling theory, but
the form of the first moment was known only for extremely wideband (short
correlation times) processes, such as gas scatiering.[4] The purposes of this
note are to derive an expression relating the expected single particle ampli-
tude growth to the noise autocorrelation function and to obtain, thereby, the
form of M, for narrow band processes (long correlation time).

2 Localized kicks as additive noise.

We shall describe the dynamics in terms of extended phase space coordinates

z, p, and 6.
z z s
- E = /213
= (3) (anTan ) v (
Here, 3(6), a(8), and ¥(A) are the usual Courant-Snyder lattice functions
which express the Floguet solutions to Till's equation, and we define (8) =
¢¥(8) v, where v is the tune. (Note that ¢ is a periodic function of 8.)1
and & are canonically conjugate variables (in the same symplectic form as
and p). A single turn through a perfect machine is represented by a linear

sin(¢ + §) ) (1)

cos(¢ + 8)

mapping,
x(8 ~ 27) = Rx(f) ,

where R is the rotation matrix

I ( sin 2xy )

cos 27y
The “emittance” associated with a particle at x is & times the Courant-

cos 2wy
sin 27w

Snyder invariant.
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We have put “emittance” in quotation marks because onc cannot properly
speak of the emittance of a single particle. More correctly, this is the phase
space area enclosed by Courant-Snyder tori.

Consider first a single particle circulating in a perfect storage ring and
receiving small, random, localized kicks at one location in the ring. Such a
dynamical system is described by the stochastic process,
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0
xp = RXg 1 + ( 1 ) Ni-1 (2)

where xj is the state of the particle after k turns, and { N | k =0,1,2,...}
is a set of random variables (“noise”). In one turn, the “emittance” of the

particles will change according to
T
€ = Xp Xk
8

= ;3 [xI_RTRxy : +2(0 N )Rxx.1 + NZ ]

(3)
(4)

2 .
= €k-1t Fr[cos(bru)pk. \ Ny~ sin(2rv) 2, 1 Ni_ 1 |

where I've used RTR = 1. This can be written in a different form that uses
only polar variables by substituting from Eq.(1).

. ~ 1

Ioor = Neyv/2he /B sin(2mv + ¥ 4+ v )+ 25

We now want to average Eq.(4) over all possible noise histories. As an

initial calculation, let us suppose that Ny is a zero mean process uncotrelated
with the state.

I = Nszl

(Pe-1Ni_1) = (k-1 Nio1) =0 . (5)
Then, the expected “emitiance” grows as follows.
T,
(en) = (en-1) ﬂ(Mz 1 (6)

If N\ is zero mean, stationary noise associated with random fluctuations in
a dipole field, 6 By, then

_ . Bl 6B,

M= ‘Bp| B

Q)

Substituting this into Fq.(6) yields,

<e~>f(eh.1>+rﬂ(%)z<(‘i§)z> ,

where I’ve used the stationary hypothesis to eliminate the subscript k on
&§B. The growth rate of expected “emittance” is

r=dle)/dt = fx ({ex) ~ (k1))
BN [ reBY?
- (ag) (%)
[Bol B
where f is the frequency of rotation through the accelerator. Putting in
some units,

r[1073 x 7 mm - mr/hr] = f[50kHz] x B[100m] x

(B (20 ))

That is, for a revolution frequency of 50 kHz, and 3y ~ 1000 { E = 1 TeV ), a
Tevatron dipole positioned where @ = 100 metets with an rms fluctuation in
§B/B of 107 will increase the expected invariant “cmittance” by » mm-mr
per hour.

We now relax the zero correlation assumption of Eq.(5). Let us assume
that we start from some fixed state, xo, which then evolves according to
Fq.(2) where Ny is a zero mean, stationary, stochastic process with auto-
correlation (N3 N} # 0. Since N is stationary, (NiNp) depends only on
the difference & -~ m, and we shall define the singly indexed autocorrelation
function,

Bpm = Pk E (NN
Now, since the noise is assumed to have zetro mean, we have
Vk: (Nixo) = (Nx)xo = 0.
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However, in general the noise and the state are not uncorrelated. Using

Eq.(2) repeatedly, we get

0

(N),Xk) R,(:}kak 1) } ( 1 ><NkN|¢ 1)

\ 0 0
- Rz(kak,g/>+n.( 1 )(N)‘Nk,z) + ( 1 )(NhNh—l)

B () o

n=0
We note in passing that R is just a rotation matrix, so that

sin 2wy )

cos 2rny

n -
R ( ~ sin 2rny

Now we can go back to Eq.(4) and rewrite Eq.(6) as follows.

cos 2mny

(a) = fn o)+ (0 DRM x4 SOVE) ®)

Using our previous result, we rewrite the new, second term.

k-1
2
2 term - B"L [(0 1)R™ ( )](N,,,,N,. Lon)
nt
op o1
i Lcos(anu)(N,, O Neiem)
97 1 9 ®
3 Lcos( wny )P
net
Plugging this back into Eq.(8),
27r P T
(ex) = {ex.1) 4 i(:05(27rnu)d>,. + Ed’n
The difference, (ex)  {€x. 1), now depends on k. However, we can take
the limit,
At Iim [ er) — {er—1)]
27
— —On + —Lcnﬁ {2mnuy)d
n=1
= 2 Z cos(2mnr)d, (9)

The limiting expected emittance growth rate would then be r = fx Aen.
As an example, consider a sinusoidally varying kick,

Ny = Asin(kwr 4 ),

where 4 and w are constant parameters, 7 = 1/f is the revolution period
through the ring, and y is a random variable distributed on [0, 27 ) according
to a probability measure du(y¢). (This example is slightly illegitimate, but
let us continue.) The ensemble of noise signals is indexed by , and each
member of the ensemble varies sinusoidally. Of dp(p) we demand only that
it have no first or second harmonics:

10 /du(w)ezw 0

/ du(p)e

Then it is obvious that {N,) = 0, as required, while

L TR (Ny N} = Az/du(w)sin(kwTJr @) sin(mwr + p)
- A? /du(v)%{cos[(k ~ myw7} — cos{(k + m)wr + 2¢] }
= ;,42 cos{{k — m)wT]

We now evaluate the discrete cosine transform.

(5] 00
"2: cos{2xnv) P, = %Azn; cos(2rnv) cos(nwT)
- 34L12“;:mcos{n{2xu t wr)] = cos(n(2ry - wr))
T a2
= va x |8(27v + wr) + 6(2mp —wT) )

That we get delta functions reflects the fact that the autocorrelation func-
tions &, does not vanish for large n. If we want to avoid generalized func-

tions, ®, should be tempered in some manner; the delta functions would

then revert to regular functions sharply peaked at the zero of their argu-
ments. The important point here is that the result is zero for non-vanishing
arguments of the delta function.

If we associate, as in Eq.(7), the noise with a fluctuating dipole field, then
the the limiting rate of emittance growth is expressed,

= %fwzﬂ (H%)Z (%ﬁ):u x [6(2xv +wr) + 627y — wr)]  (10)

3 Distributed kicks.

Now consider a series of kicks distributed about the ring. We shall write this
in terms of a kick function N(g),

20

N(@) = D Nus(d— ), ()

k=- o0

whose argument is ¢ = ¥/v. (This change of variables from 6 to & is made
only for convenience. The end result would be the same if we stayed with
6, but the intermediate steps would be more cumbersome. Of course, for a
two degree of freedom calculation we would have to use @ and the matrix
formulation.) The angles ¢ are completely arbitrary; they need not be
equally spaced around the ring. N(#) is formally written as an infinite sum,
but it will be finite if all but a finite number of Ni’s vanish. In such a case,

(¢) will have bounded support.

In this section we shall express the state as a complex variable. To this
end, we define

z=p+iz = /208 expli(y + §)]

(If we were lo quantize this system,
For unperturbed motion, z,, we have: dé/df = v, ¥ + 6§ =
is a constant of the motion. Thus,

d - dy —

Jg(lo/\/ﬁ) = ’a‘g'(za/\/ﬁ)

- @)

= iu(zo/\/ﬁ) . (12)

iz would become a creatinn operator.)
v+ 6‘0 _g, and 1

d -
E(Za/\/ﬁ)
When the particle is kicked, the state changes instantaneously according to
0
Ax(dr)lnoise = ( 1 )Nk )

in direct analogy to Eq.(2). We write this in terms of N(¢),

dx/ddlncise = ( ! ) (),

and finally as a dynamic for z,
dz |
4% | noine
We add this to the unperturbed motion of Eq.(12) to get the full dynamical
system.

(i 7w> (2//B) = N/ /B (13)

= N(¢)

do
The Green’s function for the linear operator on the left is
G(o~ ¢') = O(¢ — #)ei4-47 (14)

where @ is the usual Heaviside step function. (Note that we do not want
a periodic Green’s function. The boundary condition is that G(é — ¢') = 0
for ¢ < ¢'.) The solution to Eq.{13) is then written,

VB = wiVE [ asGs - $IN@)VE@)

1l

®
z.,/\/B+/ do'e™ PN (¢')//B(&)

Note that limg.._ o z = z,. This is suggestive of quantum scattering theory.
Let us define the in and out states of this problem,

VB = lim e/ V/B
sl VBT = i sen /B

where 3* serves only to carry the units and to provide an appropriate scale.
Then we have the association,
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Zot = 2in = \/E/ v N () /B (15)

Of course, this has meaning only if N(¢) has bounded support.
The single-particle “emittance” is
T T,
e = oox'x o= =iz
3 8

2

¢ e e
z0e /A / do'e ¥ N (¢')/VB(4)

The Hmiting result depends on the Fourier transform, relative to @, of N/\/B
Suppose that N/v/B = Acos(vé) for the duration
and vanishes everywhere clse. Then, for large dma. we have

at the tune value, v.
b€ [0, bmaz!
the asymptotic expression,

rA?

~ 2
fout =~ 4 Drmaz

This is reasonable. Consider what happens to a harmonic oscillator which
is kicked in phase every time it passes the origin:
linearly, and therefore its energy increases gnadratically, with the number of
kicks.

Now let us once again make N a random function and evaluate the ensem-
ble average over all possible noise histories. If we again assume a zero-mean

its momentum increases

process, ¥é: {N(#)) = 0, then,
d¢ dé” e r " ’ "
Sout T €in + ———— exp (¢ — N
(0 // o X0 g ) (NN
d¢,d¢” I ’ " 1 "
// NP O s (¢’ - ¢")] x (N(¢')N(¢"))

In particular, if (N(¢')N
same location in the ring,

(¢"")) vanished except when ¢’ and ¢’ represent the

(N(@)N(@")) = Y Kn(¢)8(¢' - ¢" — 2mn) ,
then this becomes,
{)out = €in + T Z cos| 2xnu | : [;:z) Ka(d)

N 0o

Finally, if N operates only at one point in the ring, say ¢, and if the process
is stationary, then we identify

B) = By 8(& - o~ 27k)
.3

and recapture the result of Section 2:

{out = €in + (Zm: 1) (%“;wcos(2rnu)¢n)

The extra infinite sum appears because we are here not calculating the rate
of emittance growth but the final emittance, which must be infinite for a
stationary process.

Making a switch from ensemble averages to time averages, we note that
the quantity ®, is, with probability 1 as T" - oo, the time autocorrelation
function corresponding to the stochastic function N(t) and is, according to
the Wiener-Khintschin theorem, the Fourier transform of the power spectrum
of N.

T .
®(7) = limy ,,,;/ dt N{t)N(t 4 T)*/dwewrl’(w)

We now proceed to calculate My, as in Fq.(9).

M, = AT = 5fﬂzcosnu¢(n/fn)
n=0
;{if],Z/dw (ein(wuom ,m) P(w)

- qfn ZZwP (27pfo + ufo)

Pt

- 85 >

positive frequencies

Ps(nfo + v fa)

Then, the first moment, like the second, only attains a non-zero value if
the power spectrum is non-zeto at the Schottky lines. If Py contains many
revolution frequencies in its bandwidth, M; =~ 23f, f P;df ; that is, the total
power is all that matters.

Let us apply this to a low frequency process,

N(t) = 8; cos(f2 + ¢(1)) ,

where 8, is constant, Q is a frequency below the lowest Schottky line, and ¢
is a zero-mean, random function of time (a) which is small, ¢ <« 1, and (b)
has autocorrelation function Cy(7). It is easily verified that
1,
$(7) = 501 14 Cy(7)cos r
If we now take the Fourier transform of this to get the power spectrum, in
addition to delta function terms, as in Eq.(10), we obtain a term

41”/dTC¢(T)[P7‘.(W+n)T bee] o Polw it Q)

Then the heating takes place at sideband frequencies fo(n + /) £ 2 in the
power spectrum of ¢. We would expect the bandwidth of the ¢ noise to be
less that 02, so for low frequencies §2 we would not expect to get heating from
this type of phase noise. A similar conclusion pertains to random changes
in the amplitude 4.

4 Concluding comments.

The formalisms used in the two preceding sections are interchangeable. We
could just as easily have written

2 = €™ b Nio
for Eq.(2) or used a matrix Green’s function

G(¢--¢') = O(¢ ¢)explv(d—¢)T]
0 1
- ()
in place of Eq.(14). We have recorded derivations in both formalisms for
purposes of illustration.

The two results, nonetheless, look very different.
clearly have an emittance that is growing indefinitely with time, while in
the second the emittance attains a final value. (See Eq.(15), for example.)
The difference is that in Section 2 we assumed a stationary process, which
therefore continues indefinitely, while the evaluation of Fourier harmonics
in Section 3 required a tacit assumption of a noise functions which damped
out with time. Thus, the infinite series in Eq.(11) is really finite; all but a
finite number N,’s vanish. Nonetheless, while the noise function is non-zero,
the emittance grows gquadratically with time, whereas in the case of equally
spaced, random kicks the asymptotic growth rate of the ezpecied emittance
from an ensemble of noise histories is a constant.

It turns out that a close variant of Eq.(9) was derived but not published
by Gerry Dugan several years ago; these results probably exist in the desk
drawers of a number of other people as well. We have treated only single
particle motion here. A treatment of true emittance growth requires consid-
ering motion of the centroid of a bunch and the mixing of particles within
the bunch. Merminga, Mane, and Edwards have demonstrated the equiv-
alence of various approaches to calculating the decoherence of a beam.[3]
Mane has generalized our formalism by adding a damping term as an ap-
proximate way of modelling the motion of the centroid with detuning and
thereby has developed predictions which compare favorably with emittance
growth measurements in the Tevatron.[2]

In the first section we
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