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1 Introduction. 

Historically, stochastic prorrsses, Such 85 gas scattering or storhastir cool- 
ing, have been treated by the Fokker-Plnnck equstion.[l] In this approach, 
usually considered for one dimension only, the equation can be considered as 
a continuity equation for R variable which would be a constant of the motion 
in the absence of the stochastic process, for example, the action variable, 
I r/Zr for betatron oscillations, where r is thr area of the Courant-Snyder 
ellipse, or energy in the case of unbunched beams, or the action variable for 
phase oscillations in case th? beam is bunchrd. A flux, 9, including diffusive 
terms can be defined, usually to second order. 

9 : M,F(I) t M2AF/SI + ... 

M, and MZ are thr expectation values of of FI and (61)’ duP Id the individual 
stochastic kicks over some period of time, T. long enough that the variance 
of these quantities is sufficiently small Then the Fokker-Planck equation is 
just 

AFIAI c aajar -- 0 

In many CRSCS, those where the beam distribution hss already achieved its 
final shape, usually Gaussian, it is sufiicirnt to find thr rate of increaw of 
(I) by taking simple averages over the Fokker-Planck equation. 

At the time this work was begun, therr was good knowledge of the second 
moment for gwrrel stochastic processes dw to stochastic cooling theory, but 
the form of the first moment was known only for extremely wideband (short 
corrrlation timrs) processes, such RS gas srattwing./4] The purposes of this 
note are Lo derivr an expression rrlating the expected single particlr empli- 
tude growth to the noise Rutocorrclation runrtion and to obtain, thewby, the 
form of MI for narrow band processes (long correlation time). 

2 Localized kicks as additive noise. 

&‘? shall describe the dynamics in turns ofpxtendcd phase space coordinates 
r, p, and 8. 

x ( J, ) -- ( ~B y&, ) VW ( Er,i$ ; ;)) ) (1) 

tlrrr, /j(Q), c?(8), and $(S) are the weal Coorant-Snyder lattice Functions 
which ?xprrss thr Floqoet solutions to Hill’s equation, and we define G(S) 

i(fl) vB, whrrr v is thr tune. (Note that 4 is A periodic function of B.) I 

and 6 RIP canonirally conjugate variables (in Ihe same symplectir form as a 
and p). A sin& turn through a perfect mnrhinr is represented by R linear 
mapping, 

x(6 - 2~) ~ Rx(O) , 

whprr R is t.hr rotation matrix 

R- 
( 

cos 2xv Sill 2w 
sin Zxv cos 21rv 

Thr “rmittanrr” nssnriat.?d with 
Snyclrr invariant. 

< x12 I (02 I 0~‘)2]/0 

“2X 
P 
2lrl 

a particlr at x is x tirnrs thr Coornnt- 

\V’r havr put “emittanrr” in quotation marks berausr one cannot properly 
speak of the rmittance of R single pnrtirtr. Mow correctly, this is thP phase 
spncr arm enclosed by Cour~nl-Snyder tori. 

Ccins~drr first a singtr partirlr cirrolating in n prrfect storage ring and 
rwr,iving small, random, localized kicks at IB~P location in the ring. Such R 
dvnnmiral systwn is described by thr stochastic prorrss, 

‘Oprratrd hy lhr IJnivrnilirs Rrscarrh Aswriaticm. hr. under rontrart u,th rhr U.S. 
IX-pnr,mcnt crf Fmrrsy, 

XI = Rx-1 + 
0 ! > ] 9-l (2) 

where XI is the state of the particle after k turns, and { NI. 1 k = O,l, 2,. .} 
is a set of random variables (“noisetr), In one turn, the “emittance” of the 
particles will change according to 

Ck ~ 
2, T - Xk Xk 
P 

= ; [ x;_,R%c h 1-t-2(0 NI ,)Rxr rtN:m,] 

2n 
= cr.1 + -[cos(lxv)pr INS t ~- sin(2av)zr INLI ] 

P 
(3) 

t;N:., , (4) 

where I’ve usrd RTR : 1. This can be written in R different form that uses 
only polar variables by substituting from Eq.(l). 

I,,=Ih 1 -Nb-,dmsin(Zxvt$tb,, l)t$N:m, 

we now want to .¶v?rage Eq.(4) over all possible noise histories. As en 
initial calculation, let us supposr that .‘+‘h is a zero mean process uncorrelated 
with the state. 

(P& ,NL1) = (Zk-lNk -I) - 0 

Then, the expected “emittanct-” gmws as follows. 

(5) 

(fk) q (Cl- 1) t ;!N: I) (0) 

If Nk is zero man, stationary noise associated with random fluctuations in 
a dipole field, 6Bk, then 

Ni&?!tI, 
%I B 

(7) 

Substituting this into Eq (6) yields, 

tQ-(Q ld+d(&)‘((6;)2) ? 

where I’ve uwd the strrtionary hypothesis to eliminate thP subscript k on 
DB. The growth rate of expected “emittenc?” is 

F 7 d(r)/& f x ((a) (CL! 1)) 

~~ TIP (&)“( (g) 

where f is the frequency of rotation through the accelrrator. Putting in 
some units, 

r[w3 x T mm mr/hr] 2 f[.SOkHa] x ,@[lOOm] x 

( 
&,2*/77~q x (( y,to $) 

That is, for a revolution frequency of 50 kHz, and L3-r 1000 ( E z 1 TeV ), R 
Twatron dipole positioned where /3 - 100 mrtrrs with an runs Rnrtuation in 
6H/l? of IO-’ will inrreasr the expected mvananf “cmittance” by x mm-mr 
per hour. 

We now relax the zero correlation assumption of Eq.(S). Let us RSSU~P 
that we start from some fixed state, x0, which then wolves according to 
Eq.(Z) where Nh is R zero mean, stationary, stochastic process with auto- 
correlation (NhN,) # 0. Since N is stationary, (NAN,,,) dcprnds only on 
the difference k m, and WC shall define the singly indexed wtocorrelation 
hrnction, 

@k m ~ *m k (Nki~“) 

Now, since the noise is assumed to hsvr zero mean, WC have 

Vk : (Nkxo) = (Nh)xo ~ 0 
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llmwvcr, in grnrral the noisr and thr state arr not uncorrrlatrd. Using 
t&(Z) rcpe*trdlY, WF grt 

(NkXk) 

z[Rn(; )] (NkNk.1 n) 

Wr note in passing that R. is just a rotation matrix, so that 

R.” - 
tos 2anv 

(- 

sin 27vtv 
sin Zrrnv > cosannv 

Now WP can go back to Eq(4) and rewrite Eq.(fi) as follows. 

277 
(fk) (‘k I) t (fl 1 )R(Nk lxk I) t 

0 
p 1) 

T.sing OUP pwvicrus rrsult, WC rewritr th? new. srrond term. 

(8) 

2”“tWT” ‘;k-[(“L)Rn(; )]{.?rkdk i n) 

; 2 cos(~~w’)jN~ ,Nk , ,,) 

-- 

Plugging this Ilnrk into I:<].(R), 

(Ck) (fk ,) t ; k~COS(h”.‘& t ;*,, 
n -1 

The diKerenrr, (Q) {tk I). now depends on k IIowever, we can take 
thr limit, 

~ "Q" t ; ~r"sprnv)d, 
0 n- t 

(9) 
n---m 

7’hr limiting rxperted emittance growth rat? would then he 7 : f x AC,. 
AS an rxamplr, consider a sinusoidally varying kirk, 

n-k ilsin(kwr 4 +c) 

whpre A and w aw constant paramrtrrs, r : l/f is the revolntion period 
through the ring, and 4 is a random variablr distributed on [ 0, Zn) according 
to a prohahilitv measure d@(v). (Th is example is slightly illcgitimatp, hut 
let us rontinur ) The rnsemhle of noise signals is indexed by ‘p; and earh 
mrmbcr of the ensemble varies sinusoidally. Of dpL(‘g) WC demand only that 
it have no first or second harmonics: 

.i 
Mrpb iq 

J 
dp(p)& 0 

Thrn it is obvious that {Nk) 0, RS required, uhilp 

+k or, ~ (NkN,) A2 

J 

d~(‘p)sin(kwr + ~p)sin(mus + 99) 

.4* 
J 

1 
WV) i{ c4(k TrL)(*T] cos[(k + rn)WT t Zip] } 

_ 142 
2’ 

cos/(k ~ m)ws] 

\Yc nor rvalunt~ thv divretc cosine tranrform 

fy cos(2*nv)9, : ;A2 2 C<>s(27rnV)COS(nLdT) 

n- m n: -m 

n- m 

z/l2 x 16(2nv / WT) 1 6(2au ~ UT) j 

That we get delta functions reflects the fact that the autocorrelation func- 
tions 9, dnrs not vnniqh for largr n. If we want to avoid genernliscd funr- 
tions, @,, should he tempered in some mannrr; the delta functions would 

then revert to rrgulnr functions sharply peaked at the zero of thrir argn- 
merits. The important point here is that the result is zrro for non-vanishing 
arguments of the delta function. 

If we associate, as in Eq.(7), the noise with R flnctuatlng dipole field, thrn 
the the limiting rate of emittance growth is expressed, 

r= ;f&(+J(g):., x[6(2rrv+wr)+6(Zrrv-wr)] (10) 

3 Distributed kicks. 

Now consider a series of kicks distributed about thr ring. We shall write this 
in terms of a kick function N(4), 

N(~J) ~ 5 Nk6(& bk). 

k=- m 

(“1 

whose argument is $ = $jv. (Th is change of variahlrs from 0 to d is made 
only for convenience. The end resnlt would he the same if we stayed with 
6, but the intermediate steps would he more cumbersome. Of course, for a 
two degree of freedom calculation we would have to use 0 and the matrix 
formulation.) The angles &r, are completely arbitrary; they need not be 
equally spaced around the ring. N(4) f 1s ormelly written as an infinite sum, 
but it will be finite if all but a finite number of Nk’s vanish. In snch a case, 
N(4) will have bounded support. 

In this section we shall express the state as a complex variable. To this 
end, we define 

z 5 p-t iz zz Jiraexp[i($ -t 6)] 

(If we were to quantizr this system, iz would becomr a cwntion operator.) 
For unperturbed motion, z., we have: d6/dO = v, Ic, + 6 = 4 + 61s+ and I 
is a constant of the motion. Thus, 

$(z./J~) 7 i~(zo/~p, 

~ i+/v5$ 

$(h/Ju) - iu(hlJL9 (12) 

When the particle is kicked, the state changes instantaneously according to 

0 
Ax(dk)I = , 

( > 
Nk , 

in direct analogy to Eq.(2). W ‘e write this in terms of N(4). 

Wh%o,., = ; 
( > 

N(d) > 

and finally as a dynamic for z, 

dz 

@ ~ “Oil.. 
= NC++) 

We add this to the unprrturhrd motion aof Eq.( 12) tv get the full dynamical 
system. 

d 

( > 2z -i” 
(dv’& - NIdb (‘3) 

The Green’s function for the linear operator on the left is 

G(+ 4’) = O($ &)p+W ) (‘4) 

where 0 is the usual Heaviside step function. (Note that we do not want 
R periodic Green’s fnnction. The boundary condition is that G(+ d’) = 0 
for 4 < S’.) The solution to Eq.(13) is then written, 

ZlJli = &l&i 
J 

m dd’G(d ~ d~‘)W’)/di%‘) 
-m 

J 

0 
= z.!vQ + d,$e’“(+ +“N(&)/‘@f@ 

-co 

Note that lim++, z 1.. This is suggestive of quantum scattering theory. 
Let us define the in and oul states of this problem. 

z,,/ fi- = ,“Tm zecdV~/J~ 

z;n/fi = Km z,e-‘Y+/JP , 
*--m 

wh?rP 8’ scwes only to carry the nnits and to prnvidr an appropriate SCRIP. 
Then we have the association, 
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imrl &II - &F /- c -‘““‘N(d’)IJa(@) (15) 
m 

Of course, this has meaning only if N(O) has boundrd support. 
‘I’hr sin&-particle “rmittnnrr” is 

T 
6 

Lj 
2x ; =I2 

77 *.c '"6/\fp i 
J 

* 
df#l'r '""'N($q/&@) 2 

m 

Thr limiting result drprnds on the Fourier transform, relative to 4, of N/g 
at the tune valur, V. Suppose that N/Jo Acos(w$) for the duration 

It, ( I(), &la, and vanishes everrjwhrre rlsc. ‘l’hrn, for large &,,,. WC have 
the asymptotic rxprrssion, 

T/l2 
(out = 4 5L 

‘l‘hls is rrasonablr. Consldrr what happens to a harmonic oscillator which 
is kicked in phase rvrry lime it passes the (lrigin- its momentum increases 
Ilnrarlv, and thrrrfnrr iis energy incwasrs qnadratirallv, with the numbrr of 
kicks. 

Sow Iet us rrncr again make N a random funrtion and ?valuatr thr enserr- 
tdr nvr’ragr over all possible noise histories. lf we again assume a zero-mean 
prw~ss. Vb (N(Q)) I), then, 

(Od (tn +a 
l.I 

“??!t exp iu($’ g’)j x (N(~‘)N(~“)J 
\/i7(&$P) 

Gill 1 x 
II- 

d@drY’ 

Jj3(rp’P(& 
cost v($’ $I”)] x (N(&)N($“,) 

In particular, if (N(#)N(d”)) vanished except whrn 4’ and 4” represent the 
same lorntirln in the ring, 

(N(d’)N(d’)) 2: X,(c$‘)6(& 4” Zrrn) , 
n m 

then this becomes, 

(e)ou* c,, + r c cosjlxnv] 
J, 

p d+ K”(4) 
n- m P(4) 

Finally, if N oprrnt,es onlv at one point in thr ring, SRY 90, and if the process 
is Ttationruv, then WC identify 

X”(d) @II ~&iJ @I 2xk) I 
A 

and recaplure the result of Section 2, 

(c),, <in 1 23 1 
i )i m 

&J ,zm 44%) 

The extra infinite sum appears brrausr WC arc here not wdculating thr rate 
of rmittance growth but the final rmittanrr, which must hr infinite for R 
stationary process. 

Making R switch from ensemble nver~grs 1.o time averages, we note that 
the quantity 0, is, with pra’hability 1 as ‘I’ * m, the time ~utororrelation 
function corresponding to the stochastic function N(t) and is, according to 
the ~~irnrr-Khintschio thrnrern, the Fourier transform ofthe power spectrum 
ofN. 

I 

J 

T 
@CT) 1imT ._ 

7‘ 0 
dt N(I)N(I i T) - 

J 
du 2-P(w) 

Wr now prorrrd to calrulatr Ml, as in F‘q (!J) 

nr, AI/T = ~f,~~cosapO(n,fo) 

n- 0 

;lina 1 J du (P(W/l.~ p) t cc) P(u) 

n 

;;v; c 2a~J~,(zvJf” k P,f”) 

as,f 
pm+ c 

P,(nf,, t Uf”) 
p”r>ti”r lrrq”rnrl.r 

Then, the first moment, like the second, only attains R non-wrn value if 
the powr speclrum is non-aero at the Schottky lines. If Pf contains many 
rrvolutlon frequencies in its handwldth, )lI, c 2gfo 1 P,df; that is, thr total 
power is ail that matters. 

h-t us apply this to R loa frequency pmrrns. 

N(t) = 01 ros(SX t 4(f)) , 

where 0, is constant, R is R frrquency below the lowrst Srhottky line, and 4 
is a zero-mean, random function of time (a) which is smell, 4 < 1, and (h) 
has autocorrelation function C$(T). It is easily verified that 

’ 2r +qT) = 28’ ,I i C,(T)] cos R+ 

If we now take the Fourier transform of this to get the power spectrum, in 
addition to delta function terms, as in Eq.(lO), we obtain R term 

4’, / dS+(r)[e- ‘(w+n)T t cl-.] OL r,(u I sl) 

Thrn the heating takes place at sideband frequencies fo(n f u) i II in the 
power spectrum of I$. We would expert thr bandwidth of the 4 noise to be 
less that R, so for low frequencies St we would not expect to get heating from 
this type of phase noise. A similar conclusion pertains to random changes 
in the amplitude 01. 

4 Concluding comments. 

The formalisms used in thr twl preceding sections are interrhangrablc. We 
could just 8s easily have written 

=L _ pm zlr- I + N/t , 

for Eq.(2) or used a matrix Green’s function 

G($ 4’) :- @(4 9’) exp[u(& ~~ @)J ] 

J ~ ( “1 i) 
in place of Eq.(14). We have rworded derivations in hoth formalisms for 
purposes of illustration. 

The two results, nonetheless, look very different. In the first section WC 
clearly have an rmittanrr that is growing indefinitely with tinw, while in 
the second the emittance attains B final value. (See Eq.(15), for example.) 
The difference is that in Section 2 we assumed a stationary process, which 
therefore continues indefinitely, while the evaluation of Fourier harmonics 
in Section 3 required a tacit assumption of a noise functions which damped 
out with time. Thus, the infinite series in Eq.(ll) is really finite; all but a 
finite number N,‘s vanish. Nonetheless, while the noise function is non-zero, 
the emittancr grows quadratically with time, whereas in the case of equally 
spared, random kicks the asymptotic growth rate of the ezpected emitfance 
from an ensemble of noise hialories is a constant. 

It turns out that a close variant of Eq.(9) was derived but not published 
by Gerry Dugan several years ago; these results probably exist in the desk 
drawers of R number of other people as well. We have treated only single 
particle motion here. A treatment of true emittanre growth requires ronsid- 
wing motion of the centroid of a bunch and the mixing of particles within 
the bunch. Merminge, Mane, and Edwards have demonstrated the equiv- 
alence of various approaches to calculating the decoherence of R beam.[3] 
Mane has generalized our formalism by adding a damping term as sn ap- 
proximate way of modrlling the motion of the centroid with detuning and 
thereby has developed predictions which compare favorably with emittanrr 
growth measurements in the Tevatron.[?] 
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