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A krv fcatuw of the ‘I‘euatron upgrade is the placement of proton and 
anti-proton bunches on the branrhrs of a double helix which winds around 
thP currrnt ~1~~s~~~ orbit. Elrrtrostatir wparators will transfer the bunches 
on and off thr double hrlix so that they cxpcrirnce hmd-on collisions only at 
th? exprrimental arza~, III) and DO. all other rncounlers occurring at large 
transverw wparati,m. In this way Ihr number of bunches, and the Iumi- 
nositv, ran he inrwawd without a propnrtional growth in the beam-beam 
trlnr shift. The ~renario raises R numhu of beam dynamics (tiiz. stability) 
issues, rspPriallv (a) th c conscqurnr~s of sampling magnetic fields far from 
thr magnets’ rrntrr lines. and (h) th e rfferts of the long-range beam-beam 
Interaction. This report presrnts the results of (admittedly incomplete) cal- 
culations and simulations don? to datr to explore (b); a Fermilab team (in- 
cluding Ernie Malamtld, Glenn Gndrrrc, Norman Grlfand, Gerry Jackson, 
and many othcsrs) havr bwn studying (a), both rxprrimentrdly and theoret- 
~rali,v but we shall not rrvww thosr efforts hrrr. The constraint of a page 
limit has fi>rwd us to bound this discussion rather stringently, but a more 
cnmpltate paprr &ill hr avrtilablr~ as R Fcrmilah Technical Memo. 

1 A model. 

ModrIling is thr art of simplifying until on? rearhrs a problem that has a 
chance of bping solwd and perhaps ~ dare we hope? - understood. Some 
nf the partirrrlnr simplifiralions mndr for these first calculations wrre: 

Lattirrs nnd Srprirntors 
(‘alculativns H CIP &rird out using two low-beta (50 cm 4’) Tevatron lattices 
dcs~gnrd bv ‘l;~m (‘olllni and Karl Korpk?. Thr first is an old (Srptcmb~r 
23, ISH?) Iattic? with horizontal and vertical tunes placed almost exactly at 
20.6; WC shall r&r to iL as the LLresonant” lattice. The second is more recent 
(Svptemhrr 27, ISHR), nnd its tunrs ark shifted slightly to V, z 20.578 and 

“V 20.580; WP ihall rrfrr to it as thr “ nonresonant” lattice. The most sig- 
nificant sirnplificalion is th? neglect of all rnagnrtir field nonlinearilies. The 
lorations and rxritatinns of the twelve rlccl rostatir separators were specified 
hv Ernie Malarr~od; Ivpically, these range from R f?w to about 20.30 prad.[4] 

Bunch ronfiguration 
(‘alrnlntions WPW donr using a configuratIon of rtrrnly spared hunches: in 
pnrtirular, we ustd a srt of 21 x 21 bunches. as this number was both R 
rnultlplr of 3, which assured collisions at both I30 and DO, and a factor of 
I 113. th? numbr~r of available huckels. 

Beam-bram interaction 

hlontagnr’s expwssioo for the form of th? beam-beam kick, based on a round 
or rlliplir transvcrsp distribution of particles, has been derived in many 
plar~s, including Evnns’l], Gluckstern[J], and Forman[Z]. For the calcu- 

lations dr,cribrd in this paper, thr charge distributinn in each bunch was 
taktsn to he circular gaussinn. All calculations were carried out using a 
“wrak-strong” (or “large-small”) approximation. ‘I’hrre was thus B distinr- 
lion b?(wwn “probr” particles and %vnrcc” bunchrs, or macro-particles, the 
formrr having no Pffrrt on the latter. The source bunch width was rec~lcu- 
inl.ui al rarh rr,llislon sitr, and a nominal 24n mm-mr invariant emittance 
was a~sum~~d thr~~ughwt. in most, but not all, of the calculations the source 
bunches ronlninrd 6 x 10” particles each. 

Longitllrliunl rrr0mrntonl 
W’e assume thr rnergv ta, he 1 TeV; the lattice contains dispersion and nnt- 
llral chrorrla(icitv, but il is assumrd th;*l ;)p 0. 

2 Linearized Dynamics 

1Vc’p d~sr~ss in (hi\ srction rc~sults for small amplitudr orhits, those which 
litwallv ar~‘infin~leslmallv rlow to the closed orbit. Exploration ofmoderate 
to Inrg? ampli~ll<lr rarbits will hr drsrriI,rd in the next scchoo. 

‘Opcraled by 111~ Univrn~lics Hexarch Ass<>uistion, Inc. under contract with the U.S. 
Lkparlmrnl <?I b.rwr&y. 

2.1 The closed orbit 

Thr rlertrostatir kicks are designed to position proton and anti-proton 
bunches on helical orbits while maintaining head-on collisions at BO and 
DO At full separator excitation the spacing between the two branches of 
the double helix is approximately 6 mm wer most of the ring, roughly a lOa 
separation for an invariant emittance of z ZOlr mm-mr. This separation is 
displayed, for the nonresonant lattice, in Fig.(l). However, this “bare” orbit 

i 
Figure 1: Orbit separation for the model’s design orbits 

does not take into account the kicks arising from thr long range beam-beam 
interaction, which distort it into a TIPW, “clothed” orbit.’ This is, it is hoped, 
a small effect, but one which may be significant if the transverse excursions 
of th? closed orbit at thr rxprrimental areas, BO and DO, are comparable to 
the transverse bunch width. 

Thr “clothed” orbit of the model was calculated, via Newton’s method, 
as n fixed point of the single-turn mapping. The Jacobian of the mapping, 
which is required by Newton’s method, was automatically computed using 
a Ct t implementation of “differential” algebra variables.[5] The resulting 
transverse coordinates of the “clothed” orbit at the BO interaction region is 
shown in Figure 2. The ordinate has been scaled by the beamwidth, but this 

J 

Figure 2: Clothed orbit at HO 

is not meant to imply that the &xl sudcs accordingly; one sigma (which is 
about 50 pm here) is simply a useful size with which to compare the offsets. 
The abscissa mra~urcs A,+,, the normaliwd strength of thr separators: 0 
rorresponds to turning them off, and thus having no pp bunch separation; 
1 corresponds to the full kicks producing the “bare” closed orbit shown in 
Figure 1. Notice that at BO, the motion is essentially all vertical for both 
latticrs tested. The size of the displacement is about the same at both 
locations and smaller than O.Ia, about 5 pm, owr the full range ofseparator 
strength. For A.cP > 0.5 the closed orbit distortion is already smaller than 

.~~-.____.---. -.-- 
INut to be ronrued with a closed orbll calculated 1n LISP. 
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zz 0 ma % lprn These deviations CLTP small enough so that one nrrd not 
compensate for them. 

The curve labelled “xpr” actually wprcscnts the normalid quantity 
az t Ox’, and similarly for the one labelled “ypr”; the limiting value for 
both of these is a nominal O.O5a, or less. 

2.2 Beam-beam tune shift 

By finding the cigenvalues of the Jacobian matrix used to calculate thr 
“clothed” orbit we obtain as B bonus the ezacl tunes of small ampli- 
tude motion about the closed orbit. With separators off, the approxi- 
mate tune shift per hram-beam interaction is given by the usual formula, 
( c 0.007 ,vjiniO1/ , r,.,[?rmm mr]. This must he multiplied by the num- 
ber of encoontrrs: for our model 21 x 21 configuration (i.e., 42 hits) with 
10” particles per hunch and cinV - 24, we get < zz 0.13. The tunes associ- 
ated with small amplitude oscillations about the closed orbit drop rapidly as 
separators are turned on. In Figure 3 are plotted the eigentunes associated 
with the nonresonant lattice with pph ~ 6 x IO”. The principal feature of 
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Figure 3: Effect of increasing bunch separation on tune shifts: nonresonant 
lattice. 

these curves is their very rapid falloff, a characteristic observed in Figure 2 as 
well; the limiting values are attained for AILp _ > 0.4&0.5, i.e., with separators 
powered to =z ,40-50% of their designed strength. 

3 Nonlinear dynamics 

Going beyond the lineariaed model> we explored the tunes of particles on 
larger amplitude orbits by the simple expedient of plotting the “power” spcc- 
tra obtained by evaluating FFTs of the orbits. Prior to taking the FFT, the 
data were multiplied by a windowing function (the Welch window) in or- 
der to reduce the diffraction-like effects arising from a finite sample siae./7, 
pp.441ff Initial conditions shown were chosen by setting wl x w2 7 UJ~ = 0 
and lettjng IQ ranging from 0.5 to 5; ppb is fixed at 6 x 10”. Coordinates 
w = (~0, UJI, IQ,, IUS) are interpreted wg~ E z, UJI~ = a.z +&z’, UJ~P E 1, 
and IIJ~~ E a,,y + &d. Figure 4 illustrates the (limited) amplitude depen- 
dence of the tune for a variety of values of ,I,rp (labelled as sc in the figure). 
The strong amplitude dependrncc of the tune is suppressed very quickly by 

Figure 4: Tune versus initial amplitude for fixed ppb. 

powering the separators. (Connecting the first two sample points with a 
straight line segment is R little misleading: of course, the slope of the curve 
approaches 0 as a b 0.) 

Finally, we explored R collection of orbits at both moderate and large 
amplitudes using the EOA (Exploratory Orbit Analysis) graphics shell 
AESOP.[R] We shall describe a few of these here, hut static, twwdimensionat 
pictures do not convey the full experience of viewing these orbits as they 
develop in (projected) four dimensions. 

A few representative runs at moderate amplitudes are logged in Figures 5. 
This figure tracks the behavior of an orbit passing through a given point in 
phase space as X,cgr the normalized separator strength. increases from 0 to 
0.5; ppb was set at 10”. The calculations for these figures were carried out 
using the nonresonant lattice. For each value of X,., we display four phase 
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Figure 5: Effects of helical separation. 

space projections of the (four-dimensional) orbit and the spectra for horizon- 
tal and vertical coordinates. The two-dimensional projections are along the 
horizontal, (we, w,), and the verticsl, (IQ, IQ), coordinates. The coordinates 
for the three dimensional projections, which we shall refer to as 661 plots, 
are the horizontal .and vertical “angle” variables and an “action” variable, 
horizontal action in the left hand plots and vertical in the right. These vsri- 
ables are those obtained by expressing the twedimensional projections in 
polar coordinates rather then Cartesian, actions being equivalent to redius 
squared. 

As you scan through Figure 5a-c notice the change from clean, smooth 
KAM tori when XIIp < 0.2 through e chaotic layer for XIcg z 0.3, and return- 
ing to regular behavior when .\,.p > 0.4. Observe the increasing complexity 
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of thr pow, spectra as X,,, increases and the orbit approaches a chaotic con- 
dition, ‘This broadband “noise” is tvpical of chaotic behavior. Conversely, 
as thr chaotic Iaver passes thr orhit and it settles down to smooth torus . once again, thr sprctrum hecomes once more discretc.2 One very mtrlguing 
feature emerges when vou compare the spectra from all similar figures which 
are nc,t shown here dur to page limitations. Notice that the peak spectral 
cnmprlncnt shifts with inrrrnsing A,,,, as is reasonable, and that the chaotic 
layer at A,,, 0.3 is correlntrd with (a) the peak sprxtral component hitting 
the YRIUC 0 6 and (b) a second strong, noisv spectral component coming into 
existence at 0.8. Tdis suggests a locking onto the v, = vu = 3/5 resonance 
separatrlx as the mechanism of chaos, with a possible interference from the 
“, ~ Yy 4/S or 2/5 separatrix as well. 

However, large amplitlldr orbits can experience a different phenomenon, 
one which is best described in textilic terms: what happens is as though 
KAM tori were literally woven from threads which unravel and become en- 
tangled. To see this happening, we shall track the behavior of the orbit 
passing through w (3,0,0,3) as the normalized separator strength, X,,p, 
is increased from 0.0 to 0.5. This set of calculations were carried out using 
the resonant lattice. Thr corresponding 661 plots are shown in Figure 6. 
The frst plot shows a separatrix for X,., my 0; ppb has been set to 10”; 
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Figure fi, As tori unravel orbits become tangled. 

those rho think this is too large can rescale by decreasing (in.. The orbit, 
which is in the vicinitv of a Zv, 2v, separatrix, is chaotic and visits both 
sides of the separatrix. (Bear in mind that what we are viewing is only one 
three-dimrnsional slier through the full separatrix.) A remarkable transi- 
tion occurs as X,,, increases from 0.0 to 0.1; Figure(Gb) shows the orbit at 
x ‘CP 0.1. The separatrix now contains only two lobes rather than the four 
that it prrviouslv had; it looks more like a v, vu separetrix. It is almost as 
though one of thr unstable resonant nrhits defining the seperatrix has under- 
gonr a transition to stahility. (Are we observing here some four-dimensional 
form of period doubling?) At XILp - - II.14 another remarkable jump occurs, 
and the orbit fills the wedge formed by the separetrix, as seen in Figure 
(6~). The “wedge” smooths out and becomes tighter until, at X,,, Y 0.3, as 
seen in Fignrr (fid), It winds around R tight KAM torus, close to a stable 
resonant orbit. (Note the change in viewing angle.) Although it is difficult 
to tell from these figures, this torus lies remarkably precisely in the inter- 
section region of the separatrix of Figure(Gb) or, equivalently, at the cusp of 
the wedge in Figure (SC). If we now increase X,., further, an extraordine;y 
thing happens: the torus gets larger and begins lo unravel. This is seen III 
Figure(&), which shows the orbit at X.,, 7 0.4. The unravelling has begun, 
hut enough of shape of the torus remains that one can make out its former 
existence and location. By X,., = 0.5 the torus has completely disappeared 
and the orbit is simply a tangled thread, as seen in Figure(Ge). Here we have 
a phenomrnon due to the long range beam-beam interaction which does not 
vanish for Xlrp > 0.5. These very large amplitude orbits are still feeling the 
effect of the sourw hunches. Keep in mind. however, that we have displayed 
only the orbits passing through one particular point in phase space. Not all 
large amplitude orbits behave like this. Indeed, the orbit passing through 
(3,O. 0; 3) still lies on an identifiable, perfectly regular torus. Thus, the 
problem is (a) to identify the probability of actually encountering such or- 
hits, and (b) understand their impact on stability. This particular tangled 
orbit, for example remained bounded for over 50,000 iterations. Though 
it looks ugly, this aesthetic judgement may have no relevance to issues of 
stabdity. 
- -- .~~ 

‘1 am curious about how these orbits would “sound” if we could convert 
these spectra into audible sound waves. Is it possible that the ear could 
discriminate betwren chaotic and regular behavior better than the eye? 

Some large amplitude orbits exhibit phaselock, as seen, for example, in 
Figure 7. This orbit (resonant lattice) spends most of its history with hor- 
izontal and vertical phases locked near 6, 62 zz 0. or x, resulting in the 
vertical walls appearing in the 661 projections. The transitions between 

h.*, *-_, ..-,m .,-ow .,.om .,-I)*/ “** h/1. -am” XI * L/s .?I.-- I iv ._.~~-..-~-. 

I ? n 
P’*---~ : ,y ..~~. 
a ,n ~~~ ...~~~.. ~I~--. I 

Figure 7: Phaselocked orbit. 

these two walls take place on time scales small compared to the time spent 
in the locked regions. 
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