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Orbital dynamics in the Tevatron double helix.

LEO MICHELOTTI and SELCUK SARITEPE
Fermilab®, P.O.Box 500, Batavia, IL 60510

A key feature of the Tevatron upgrade is the placement of proton and
anti-proton bunches on the branches of a double helix which winds aronnd
the current closed orbit. Electrostatic separators will transfer the bunches
on and off the double helix so that they experience head-on collisions only at
the experimental areas, B0 and DO, all other encounters occurring at large
transverse separation. In this way the number of bunches, and the lumi-
nosity, can be increased without a proportional growth in the beam-beam
tune shift. The scenario raises a number of beam dynamics (viz. stability)
issues, especially (a) the consequences of sampling magnetic fields far from
the magnets’ center lines, and (b} the cffects of the long-range beam-beam
interaction. This report presents the results of (admittedly incomplete) cal-
culations and simulations done to date to explore (b); a Fermilab team (in-
cluding Ernie Malamud, Glenn Goderre, Norman Gelfand, Gerry Jackson,
and many others) have been studying (a), both experimentally and theoret-
ically, but we shall not review those efforts here. The constraint of a page
limit has forced us to bound this discussion rather stringently, but a more
complete paper will be available as a Fermilab Technical Memo.

1 A model

Modelling is the art of simplifying until one reaches a problem that has a
chance of being solved and perthaps — dare we hope? — understood. Some
of the particular simplifications made for these first caleulations were:

Lattices and Separators

Calculations were carried out using two low-beta (50 cm 3*) Tevatron lattices
designed by Tom Collins and Karl Koepke. The first is an old (September
23, 1987) lattice with horizontal and vertical tunes placed almost exactly at
20.6; we shall refer to it as Lhe “resonant” lattice. The second is more recent
(September 27, 1988), and its tunes are shifted slightly to v, = 20.578 and
vy -~ 20.590; we shall refer to it as the “nonresonant” lattice. The most sig-
nificant simplification is the neglect of all magnetic field nonlinearities. The
locations and excitations of the twelve electrostatic separators were specified
by Ernie Malamud; typically, these range from a few to about 20-30 prad.[4]

Bunch configuration

Calculations were done using a configuration of evenly spaced bunches: in
particular, we used a set of 21 x 21 bunches, as this number was both a
multiple of 3, which assured collisions at both B0 and DO, and a factor of
1113, the number of available buckets.

Beam-beam interaction

Montaguce’s expression for the form of the beam-beam kick, based on a round
or elliptic transverse distribution of particles, has been derived in many
places, including Evans[1], Gluckstern[3], and Furman[2). For the calcu-
lations described in this paper, the charge distribution in each bunch was
taken to be circular gaussian.
“weak-strong” (or “large-small”) approximation. There was thus a distinc-
tion between “probe” particles and “source” bunches, or macro-particles, the
former having no effect on the latter. The source bunch width was recalcu-
lated at each collision site, and a nominal 24x mm-mr invariant emittance

All calculations were carried out using a

was assumed throughout, in most, but not all, of the calculations the source
bunches contained & x 10'® particles each.

Longitudinal momentum

We assumie the energy to be 1 TeV; the lattice contains dispersion and nat-
ural chromaticity, buat it is assumed that ép .= 0.

2 Linearized Dynamics

We discuss in this section results for small amplitude orbits, those which
literally are infinitesimally close to the closed orhit. Exploration of moderate
to large amplitude orbits will be described in the next seclion.
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2.1 The clnsesd arhit,

The electrostatic kicks are designed to position proton and anti-proton
bunches on helical orbits while maintaining head-on collisions at B0 and
DO. At full separator excitation the spacing between the two branches of
the double helix is approximately 6 mm over most of the ring, roughly a 100
separation for an invariant emittance of &~ 207 mm-mr. This separation is
displayed, for the nonresonant lattice, in Fig.{1). However, this “bare” orbit
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Figure 1: Orbit separation for the model’s design orbits.

does not take into account the kicks arising from the long range beam-beam
interaction, which distort it into a new, “clothed” orbit.! This is, it is hoped,
a small effect, but one which may be significant if the transverse excursions
of the closed orbit at the experimental areas, B0 and DO, are comparable to
the transverse bunch width.

The “clothed” orbit of the model was calculated, via Newton’s method,
as a fixed point of the single-turn mapping. The Jacobian of the mapping,
which is required by Newton’s method, was automatically computed using
a C++ implementation of “differential” algebra variables./5] The resulting
transverse coordinates of the “clothed” orbit at the BO interaction region is
shown in Figure 2. The ordinate has been scaled by the beamwidth, but this
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Figure 2: Clothed orbit at B0 .

is not meant to imply that the effect scales accordingly; one sigma (which is
about 50 pm here) is simply a useful size with which to compare the offsets.
The abscissa measures Asep, the normalized strength of the separators: 0
corresponds to turning them off, and thus having no pjp bunch separation;
1 corresponds to the full kicks producing the “bare” closed orbit shown in
Figure 1. Notice that at B0, the motion is essentially all vertical for both
lattices tested. The size of the displacement is about the same at both
locations and smaller than 0.1, about 5 um, over the full range of separator
strength. For A,,, > 0.5 the closed orbit distortion is already smaller than

'Not to be confused with a closed orbit calculated in LISP.
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2 0.020 = lum. These deviations are small enough so that one need not
compensate for them.

The curve labelled “xpr”
az + B2’, and similarly for the one labelled “ypr”; the limiting value for
both of these is a nominal 0.050, or less.

actually represents the normalized quantity

2.2 Beam-beam tune shift

By finding the eigenvalues of the Jacobian matrix used to calculate the
“clothed” orbit we obtain as a bonus the ezact tunes of small ampli-
tude motion about the closed orbit. With separators off, the approxi-
mate tune shift per beam-beam interaction is given by the usual formula,
£ 2 0.007 N[10'° /einy[#mm — mr]. This must be multiplied by the num-
ber of encounters: for our model 21 x 21 configuration (i.e., 42 hits) with
10! particles per bunch and €ine = 24, we get £ & 0.13. The tunes associ-
ated with small amplitude oscillations about the closed orbit drop rapidly as
separators are turned on. In Figure 3 are plotted the eigentunes associated
with the nonresonant lattice with ppb = 6 x 10'°. The principal feature of
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Figure 3: Effect of increasing bunch separation on tune shifts: nonresonant
lattice.

these curves is their very rapid falloff, a characteristic observed in Figure 2 as
well; the limiting values are attained for A,., > 0.4—0.5, i.e., with separators
powered to =~ 40-50% of their designed strength.

3 Nonlinear dynamics

Going beyond the linearized model, we explored the tunes of particies on
larger amplitude orbits by the simple expedient of plotting the “power” spec-
tra obtained by evaluating FFTs of the orbits. Prior to taking the FFT, the
data wete multiplied by a windowing function (the Welch window) in or-
der to reduce the diffraction-like effects arising from a finite sample size.|7,
pp-441f Initial conditions shown were chosen by setting w;, = wy = w3 =0
and letting wo ranging from 0.5 to 5; ppb is fixed at 6 x 10'?. Coordinates
w = (wo, w1, Wy, w3) are interpreted woo = 2, wio = a.z + G.2', w20 =y,
and w30 = o,y + B,y Figure 4 illustrates the (limited) amplitude depen-
dence of the tune for a variety of values of A,.p (labelled as s¢ in the figure).
The strong amplitude dependence of the tune is suppressed very quickly by
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Figure 4: Tune versus initial amplitude for fixed ppb.

powering the separators. (Connecting the first two sample points with a
straight line segment is a little misleading: of course, the slope of the curve
approaches 0 as 2z - 0.)
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Finally, we explored a collection of orbits at both moderate and large
amplitudes using the EOA (Exploratory Orbit Analysis) graphics shell
AESOP.[6] We shall describe a few of these here, but static, two-dimensional
pictures do not convey the full experience of viewing these orbits as they
develop in (projected) four dimensions.

A few representative runs at moderate amplitudes are logged in Figures 5.
This figure tracks the behavior of an orbit passing through a given point in
phase space as A,.p, the normalized separator strength, increases from 0 to
0.5; ppb was set at 10!}, The calculations for these figures were carried out
using the nonresonant lattice. For each value of A,., we display four phase
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Figure 5: Effects of helical separation.

space projections of the (four-dimensional) orbit and the spectra for horizon-
tal and vertical coordinates. The two-dimensional projections are along the
horizontal, (wo, w1), and the vertical, (w3, w3), coordinates. The coordinates
for the three dimensional projections, which we shall refer to as 681 plots,
are the horizontal and vertical “angle” vatiables and an “action” variable,
hotizontal action in the left hand plots and vertical in the right. These vari-
ables are those obtained by expressing the two-dimensional projections in
polar coordinates rather than Cartesian, actions being equivalent to radius
squared.

As you scan through Figure 5a-c notice the change from clean, smooth
KAM tori when A,., < 0.2 through a chaotic layer for A,., =~ 0.3, and return-
ing to regular behavior when A,., > 0.4. Observe the increasing complexity
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of the power spectra as A, ., increases and the orbit approaches a chaotic con-
dition. This broadband “noise” is typical of chaotic behavior. Conversely,
as the chaotic layer passes the orbit and it settles down to smooth torus
once again, the spectrnm becomes once more discrete.? One very intriguing
feature emerges when you compare the spectra from all similar figures which
are not shown here due io page limitations. Notice that the peak spectral
component shifts with increasing A,.p, as is reasonable, and that the chaotic
layer at A,ep = 0.3 is correlated with (a) the peak spectral component hitting
the value 0.6 and (b) a second strong, noisy spectral component coming into
existence at 0.8. This suggests a locking onto the v, =y = 3/5 resonance
separatrix as the mechanism of chaos, with a possible interference from the
v, = vy = 4/5 or 2/5 separatrix as well.

However, large amplitude orbits can experience a different phenomenon,
one which is best described in textilic terms: what happens is as though
KAM tori were literally woven from threads which unravel and become en-
tangled. To see this happening, we shall track the behavior of the orbit
passing through w - (3,0,0,3) as the normalized separator strength, A,.p,
is increased from 0.0 to 0.5. This set of calculations were carried out using
the resonant lattice. The corresponding 681 plots are shown in Figure 6.
The first plot shows a separatrix for A,.p, = 0; ppb has been set to 101,
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Figure 6: As tori unravel orbits become tangled.

those who think this is too large can rescale by decreasing €iny. The orbit,
which is in the vicinity of a 2u, — 2v, separatrix, is chaotic and visits both
sides of the separatrix. (Bear in mind that what we are viewing is only one
three-dimensional slice through the full separatrix.) A remarkable transi-
tion occurs as A,,, increases from 0.0 to 0.1; Figure(6b) shows the orbit at
Asep = 0.1. The separatrix now contains only two lobes rather than the four
that it previously had; it looks more like a v, - vy separatrix. It is almost as
though one of the unstable resonant orbits defining the separatrix has under-
gone a transition to stability. (Are we observing here some four-dimensional
form of period doubling?) At A,., & 0.14 another remarkable jump occurs,
and the orbit flls the wedge formed by the separatrix, as seen in Figure
(6c). The “wedge” smooths out and becomes tighter until, at A,., ~ 0.3, as
seen in Figure (6d), it winds around a tight KAM torus, close to a stable
resonant orbit. (Note the change in viewing angle.) Although it is difficult
to tell from these figures, this torus lies remarkably precisely in the inter-
section region of the separatrix of Figure(6b) or, equivalently, at the cusp of
the wedge in Figure (6¢c). If we now increase A,.p further, an extraordinary
thing happens: the torus gets larger and begins fo unravel. This is seen in
Figure(6e), which shows the orbit at A,., = 0.4. The unravelling has begun,
but enough of shape of the torus remains that one can make out its former
existence and location. By A,.p = 0.5 the torus has completely disappeared
and the orbit is simply a tangled thread, as seen in Figure(6e). Here we have
a phenomenon due to the long range beam-beam interaction which does not
vanish for A,.p > 0.5. These very large amplitude orbits are still feeling the
effect of the source bunches. Keep in mind, however, that we have displayed
only the orbits passing through one particular point in phase space. Not all
large amplitude orbits behave like this. Indeed, the orbit passing through
(3,0,0, - 3) still lies on an identifiable, perfectly regular torus. Thus, the
problem is (a) to identify the probability of actually encountering such or-
bits, and (b} understand their impact on stability. This particular tangled
orbit, for example remained bounded for over 50,000 iterations. Though
it looks ugly, this aesthetic judgement may have no relevance to issues of
stability.

2] am curious about how these orbits would “sound” if we could convert
these spectra into audible sound waves. Is it possible that the ear could
discriminate between chaotic and regular behavior better than the eye?

Some large amplitude orbits exhibit phaselock, as seen, for example, in
Figure 7. This orbit (resonant lattice) spends most of its history with hor-
izontal and vertical phases locked near &, - 8, = 0, or m, resulting in the
vertical walls appearing in the 88/ projections. The transitions between
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Figure 7: Phaselocked orbit.

these two walls take place on time scales small compared to the time spent
in the locked regions.
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