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Abstract

Analytical solutions to the equations of motion of a charged particle
through the extended fringing field of a dipole magnet are obtained
in the formalism of the computer code TRANSPORT. They are rep-
resented by first-. second-, and third-order transfer matrices which
contain integral form factors of the field. A straight inclined houndary
is considered.

1 Introduction

The optical effects of the field boundary of a dipole magnet have been
described to the second order for the sharp-cutoff approximation [1]
and to the first order for the extended fringing fields [2,3]. In the third
order, the sharp-cutofl approximation produces infinities in the matrix
elements [4]. To abtain the full third-order solution, one must consider
the extended nature of the field.

In this paper we describe the calculation of the transfer matrices
for the fringing field of a straight dipole boundarv. The matrix elements
are given by the coefficients in the Taylor expansion,

B LY LYY it O

where X is the usual 6-vector of the TRANSPORT [5] coordinates,
X o (z, 2"y, ¢, 0L 8).

It is convenient to characterize the extent of the transition field
region with a dimensionless parameter ¢ == d/p, where p is the inside
bending radius and d is the vertical separation of the poles. We as-
sume that ¢ « | and derive the matrices K, T, U/ to O(e). In this
approximation, we find that the matrix elements depend on certain
dimensionless line integrals. There are two such integrals present in
the second order and six more in the third order. Also, we can identify
the term which leads to a divergence in the sharp-cutoff limit.

The procedure to obtain transfer matrices without using the ¢ ex-
pansion is outlined in 6]. It is based on the Lie algebraic approach
[7] and the connection formulas ‘8] bet ween the canonical Hamiltonian
variables and the TRANSPORT coordinates. The complete descrip-
tion of the problem as well as the explicit list of all the matrix elements
can be found in 191,

2 Mathematical Formulation

We consider the entrance of the bending magnet shown in Fig. 1. The
coordinate s measures the distance from the the effective field bound-
ary. The coordinate system {s,u,y) is rotated clockwise around the
y-axis with respect to the reference system (z,z,y). The rotation an-
gle 3 is taken to be positive.

The net effect of the fringe field of an inclined boundary can be
mathematically represented by a fictitious optical element of zero thick-
ness, located at the reference plane [1,3]. The transfer matrix for such
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Figure 1: Midplane geometrv. Reference planc is normal to the design tra-
jectory. Angle 3 is taken to be positive. Axis y points out of the paper.

a lens is given by a product of three transformations.

MOT e B AT 2 A (2)

where

1. M% ! is a transformation from the reference plane to the begin-
ning of the fringe region through the pure drift field;
2. MV~ is the transformation through the fringe region;

3. M2/ is the transformation from the end of the fringe region back
to the reference plane through the pure hend field.

The field in the air gap makes a gradual transition from the lon-
gitudinallv uniform interior field By to the field-free region external to
the magnet. We assume the midplane field depends on the distance s
only, i. e. we neglect the effects connected to the finite width of the
magnet. We define

By 0)

b )
3 Derivation of Matrix Elements

3.1

Transformation Variables

We can write the relationship between the two sets of variables,

u zsinf3 + rcos 3

] zcosd - rsind

i du/dz ¢ i tan 3 .

U - - {1)
ds/dz 1 z'tanj

. dy/dz y' sec 3

y ds/dz 1 z'tan8

where the dot denotes d/ds and the prime denotes d/dz. Anticipating
future expansions, we define a new variable w as the deviation from
the reference trajectory,

u(s) = w S) bA(s
us = w(s) v Als
Let us next scale the variables as follows,

8 »

¢ -

s/d
¢/p

where a generic { denotes anv of z,y, z, v, w, A, From now on, we will
use the explicit symbol d/ds to denote the dimensionless derivative
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and the dot to denote the differentiation with respect to the original
unscaled variable s.

To obt

transformations,

ain the matrix elements, we must perform the following

: 0 s 8 s 8 z: 0
Ta wy 1wy ) zf
, AqO 1 ) M2t 'y
T un SR Uy T z
Yo N ¥ v/
’ . !
o A W2 Yy s

3.2 Drift Region Transformation

n the drift region, B - 0 and the equations of motion are simply

2" - 1/” -0 (5)

Using Fq. 5 and expanding to the third order in the initial couditions
(0. 24. Yo, ¥). we get the drift map,

. 2 . .
uy (;rn 4 €817y sec :3) sec 3 + (aory ¢ €5y xp” sec ;3) sec 3 tan 3
2 3 ) ;
v ra :r:, Loesy rf, see 3)sec ’itan" 3
. \ ' 2 2
i zhsec? 3 1 gy sec? 3tanB 4 .ro sec? ftan’ 8 (6)
% (un, - rﬁlyn sec '3) (Tny(’, - (912‘01/0 s0C 1) an 3

(2
v zrnyn ¢+ oest 2y yhsec3)tan® 3

i ynsec 3 + zgypsec Jtan B 4 r:,zy(') sec A tan® 3

The reference trajectory’s coordinates at s ~ s; are given by

Ay - ¢s tand
Ay tan 3

3.3 Fringe Region Transformation
Using Maxwell’s equations and the midplane symmetry we can expand

the magnetic field components around b(s) = B {s,u,y - 0):

B.(s,u,y llvy%--
By(s,uy 0 . (7
By(s,u,y) = b- zi;yz b

From the above expansions, we can write the equations of motion
as follows,

2

it = =T | f(t4 )+ guy
io= -Tie(1+d*)+ Jig ®)

where

1
T - (1 b Ay ,1;2>’

I . 1.
e h - hyjy hy?
/ p(1+6)( vy 2"’)
1

R (R M
We obtain the equation for A by puttingu = A,y - = 6§ = 0in
Eq. 8:
o h .
A= -2y Ayl (9)
p

The above equation can readilv be solved by iteration,

As) - tand - esec® g [h(s')ds'% 0 ({2)
1

We cxpand Eq. 8 to the third order in w, @, y, 7, and §. The result
can be written in the form of the dimensionless equations as follows,

(10)

d .
e
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dy .
€y
s d )
oo Ty g (u"l';; M'frg)‘
ds s | | d?h
(2«‘3’1‘4 WAl 'y 4 2;‘,11‘2 ! M‘fl'zﬂ o d.2” gri,
where ’
. ! . (242 NE \?
Fy- (I l AZ)I I'y ST \ A) Ty A(Hmi)
(1ia7): (1+47): (r-32):

The first-order solution to Eq. 11 is well known |2, We will obtain
the nonlinear part of the solution using the order-hv-arder method
similar to the Green’s function integration emploved for the case of an
ideal magnet {10,111,

3.3.1 Second Order Coefficients

The most general second-order solution to Fq. 11 is given by

Ryw 32 Rygiry 1+ Rygé .
) + Tiggir} + Tiggtiny & 4 Tiaayy
w Rzzll' + sté

b Tozte} 1 Taagting6 + Tosayl

w -
s P T 2
Piaandie v Tvaady 1 Thgeb

C Ty gn ¢ Taaay? + Tosgd?

¥y = HRayr + Raan (12)
) Jr122';"‘1y1 + Tazatingn + Tazelid + Taaeiné
] Razyr + Raatn

t Tazztings + Tazatingn + Tazen® § Tasené

Putting Fq. 12 into Eq. 11 and equating the same second-order terms.
we get the equations for 7j;.’s,

d

d
d{fj Ty;
4

d ..

ds as PTas)  ass

The functions fy,; and fy;; are given in Table 1.

Ty eTyij
~3ePITyRT 5,5 ¢ fan,
(T4l]

~Tr,

Tai; (13)
Tai;

Eq. 13 can be solved

Table 1: Driving Terms For Second-Order Matrix Elements
Tisn |  Jie
v ngz T ) 73(}1’\’%2]‘;\/2
Thae. 3ch(Raal 20 Iy fizal's)
- Tasa | (’d?h/qs_’ﬁ T3/¢ 1 2dh/dsRazRasT chRi00) /2
Tm th/d R;,;R;MF;‘( t dhjds(Ra3Res - RaaRaa)ly - chRyaRaaT )
Tha (Ph/ds* RT3 /e 1 2dh/dslis Ryl R RIT 1)/2
Tres Teh(BR%,Ta  6Ryal2l 1 21372
Rﬁza T T wdh/dsRypRasTs  chRyaRaals
o TdhJdsRaaRaal's  chHapRaal's
Tize | dh/ds(RaslZls  RpaRasl's) b eh(Raglily - RagRaals)
i Tsas ~dh/ds(Ra, 13T, (}ZﬂRMrs) Feh(RyTIT,  HaeRgql's)

by iteration to a desired order in e. We get the following expansion

series,
Tiij(s) = ¢ [ Tay(s)ds'
Tauji(s) = [, ‘f?ij(-")dﬁ,
S [rieronen [ oS (1)
- by
Tai5(s) € / Jaij(s")ds"ds' '
Tusls) = [ Tas(sds VLl Ih() T ()
S
1386

PAC 1989



3.3.2 Third Order Coefficients

We add the third order terms with coeflicients Uik Lo the expansions
in Eq. 12 Then, we put Fq. 12 into Eq. 11 and equate the same
third-order terms. We get

d

(¥<,"|!Jk ("WleJvl<
/ Uik »3([’?1‘2’1(72;11« “ 9214k
o
( .
Vi Uy (15)
4 d
Uy, Ty - (hUan) - gaij
s Aisk ! st(’ 3]’r) G4ijk

The functions gg, ;0 and gy, ;6 depend on 1,’s, f,;’s and T4, and are
given in |9, kq. 15 can also be solved by iteration; matrix elements

U,k have the same iteration series as do the elements Tk in Eq. 14,

3.4 Bend Region Transformation

In the pure bend region, B -+ Byy and the equations of motion can be

written as follows,

" 1 12 r2 72;
4z Tir™
: ﬂ(“ﬁ)( )( y)
1

" ! ’l(] ' 112 . r?)? 6
y s 7Y y (16)
We can solve g, 16 exactly for z° and y',
' m(L+8)  T(z oz

r . ) - (17
[(1+ &)+ 22(1 + 6)7‘(1.: zz)  THz o 3p)??

’ 2] .
(0 + &) 4 22L(1 4 8)7r(z z3) 73z

where R

‘r"\/1+1:5124 i

The above equations can be integrated to obtain z and y. We can then

put z .. 0 and expand to the third order in (ws, g, ya, 2, 6) using Eq. 5

and Eg. 10.

4 Nonlinear Solutions

4.1 Second Order Matrix Elements
The second-order solution contains two integral form factors,
o [ Tdsh h(s) A(s)
D m’”
I / sl h(s)| h2(s) (18)

The integrands in Eq. 18 go rapidly to zero at both sides of the integra-
tion limits; this fact allows to remove the uncertainty in the extent of
the fringe region and gives a practical wav for the integrals’ evaluation.
The 10 non-zero terms are given below:

tan?p
Tin L
" soc’f? P sin 3(5 - sin? 4) \
. ¢
R 2 2 2c0s' 3
Ty tan?3 4 .-
T216 tanf t -
T sin 3(1 1 sin® 3)
3 2;053
sin? 8 2
€ s Iy(5 cos? 3) Iy cos® 3
cos® [ 2
. sin 3(8 4 cos? 3
T34 tan? 3 - ey A C,h ) }
( cost 13
Y sin 3(1 4 sin® 3
/3|3 tanzﬁ '([2 "”6\ B ) boe
cos? 3 )
- ; sin3(1 1 sin® 3
Ty tan® g 4 €ly 1—( - ‘) !
(ros" 3 5
. sin (5 ¢ sin? 3)
Tz sec? B 4 ol [
' 2 r(z)s" 3
e 2(1 + sin“ g3
Tyae tan 3 (12 ( ) )
cos3 3
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The ahove matrix elements are in perfect agreermnent with the known
sharp-cutoff approximation results 111 (¢ 0 ).

4.2 Third Order Matrix Elements

The third-order solution has six more integral form factors, all which
contain the square of the field derivative,

‘ o dh(s) 2

Jy /; ds s 2
Yoo dh(s)

Jy /:C ds de s

: dh(s)4?
Iy d(;) s? (19)

/ ds
oo 1h(s)4? ‘
Jo - / ds {1(5) /'ds’»(.s')
s ds o
g 2.
- / ds s
ds

dh(s)
I5 s ds

4 2 '
Je / d,’(s) ds' [ ds"h(.c")
o~ ds i <

The integrands in Fq. 20 also go rapidly to zero al both sides. The
intgeral Jy is divergent in the sharp-cutoff approximation. There is
only one term that contains it,

Jisec? 3

6.%
sin

T 12cos5 4

00
20

Uszas
[sinzﬁ (l | 6(*052/1) + 8J,  A2J4
Space considerations do not permit to include the complete set of the

34 third-order matrix elements. As a sample. we give the chromatic
terms,

. tan? 3
Unie = Y
. sec? 3 sin3(5 1 sin? 3)
Uiszs = -yt ey o
2 cost 3
Uiz ~tan® B+ -
([2166 = tan 'H e
_ sin A(1 + sin? 3)
Uzaae - = 3a }
cos? 3 2 4
2sin3(1 + sin® g
Use — tan?g g, 20mA0 sintg)
cost 3 )
2s5in3(1 1 si 3
Usyae tan’ 3 + o, sin 3( sin® 3) }
; ('ns",iz;
2sin (1 ¢ sin‘ [
Ugias = tan’j sy B( A) e
3(‘05" 3 2 4
2sin 3(5 + sin?
Usss sect g o ol 25 AG 1 sinTE)
cos? g‘}
3(1 ¢ sin
Uszee tan3 | el (. A [
cos? 3
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