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Abstract 

The interactive beam program, LATTICE, has been extended to 
calculate, optimize, and plot the distortion functions of T. Collins for 
sextupole magnets. King Ng has shown that these fimctions can be 
rigorously derived from a Hamiltonian, subject only to the thin lens 
approximation. The functions are calculated from stored phases and p 
values for each sextupole, each bending magnet with a sextupole 
component, and at other arbitrary marker locations. Very general 
fitting capabilities are provided, the only restrictions being that 
changes are not allowed that would alter the linear beam properties. 
The values of any of the five functions may be specified at any 
location in the lattice, and the coefficients of tune shift with amplitude 
may be specified. Plots of the phase space projections on the lateral 
and vertical planes are provided as online graphics with optional 
oflline Tektronix and also PostScript plots. The tune shift coefficients 
have been compared with those generated by a Fourier transform of 
tracking data and with the values calculated by the MARYLIE code, 
yielding reasonable agreement. The phase space plots have been 
compared with those obtained by tracking a few thousand turns. In 
doing this latter comparison, it is important to use equivalent starting 
conditions as the linear ellipse is displaced, distorted, and shifted in 
phase. 

Distortion Functions 

Tom Collins’ has shown that all of the important effects of nonlinear 
fields can be derived from a series of periodic functions that he calls 
distortion functions. These functions provide the same kind of 
information about the non-resonant distortion to orbits due to 
nonlinearities that the Courant and Snyder functions provide for the 
linear behavior. With the exception of resonant extraction and 
injection regimes, where this approach is not valid, these functions 
should suffice in fully describing the effects of nonlinearities in a 
properly designed machine (one where the working point is not too 
close to a driven resonance). The machine nonlinearities perturb the 
betatmn frequencies and distort the beam envelopes. Of wm-se, 
although distorted, the beam envelope is still periodic. The distortion 
functions are sufficient for describing all of these effects. As is the 
case for the Courant and Snyder functions, the distortion functions are 
independent of particle amplitude and phase. 

For normal sextuple magnets, there are five such functions. These 
distortion functions depend only on the linear lattice properties 
(Courant-Snyder p and c1 functions and phase advance) and the 
strengths of the nonlinearities. The only approximation made is the 
nonlinearities are assumed to occur just at discrete points. It is well 
known that one obtains a completely canonical set of equations when 
he uses linear transformations combined with nonlinear “kicks”. King- 
Yuen Ngl has shown that Collins’ formulae can be precisely derived 
from the proper Hamiltonian and that the results for sextupole-induced 
tune stifts are in complete agreement with the results of Ohnuma. 
Nikolitsa Merminga and Ng have compiled all of the expressions for 
distortion functions for the following types of nonlmeatities”: 
sextupole, skew sextuple. octupole, skew octupole, and skew 
quadrupole (which, of course, is not really a nonlinear magnet). 
Probably the most important numerical result that one gets from this 
approach is the shifts in the tunes with increasing amplitudes of 
oscillation. 

Calculation Method 

The code first goes through the entire lattice to set up an array 
containing the Courant-Snyder functions at the middle of all bending 
magnets and sextuple magnets and at all marker locations 5” 
(“slit”). The array also contains pointers to the lattice so the code can 
obtain the magnet parameters. The five sextupole distortion functions 
are then calculated at each of these locations with the results stored in 
the same array. Finally, the three independent coefficients of tune 
shift with amplitude are calculated as well as the chromaticities. A 
table is printed containing these results. Included in this table is a 
breakdown of the contributing terms to the tune shifts, allowing 
possible resonant phenomena to be identified. If offline output has 
been specified, a similar table is prepared, but in this case, the 
cumulative length is appended in order that the functions may be 
plotted. At each location where the functions are calculated a line is 
printed containing the values of the functions; this line is followed by 
a line containing the derivatives of the functions. One may abbreviate 
this output by restricting printing to, for example, sextupoles; in this 
case the derivatives are not printed. 

Plotting of Distortion Functions 
A new command pd (for “plot distortions”) has been added. This 
causes the plotting of the projections onto the two lateral planes of the 
phase Space figure for the emittance given on the beam card. The 
plot is available at the center of any sextupole or bending magnet and 
at any other location that has been designated as a marker. 

Figure 1 Distortion plot in the radial plane. 

For the radial plane, the figure contains four parts. First there is the 
linear ellipse (no sextupoles); this ellipse is shown as a dotted curve 
on the offline PostScript plot and as a cyan cmve on the online EGA 
display. Next, the distorted curve is plotted in the absence of 
coupling (e.g. for zero emittance in the vertical plane); this is shown 
as a solid curve on the PostScript plot and as a blue curve on the 
EGA plot. Thirdly, the area swept by with coupling is shown as a 
shaded area on the PostScript plot and as an array of green curves on 
the online plot. The fourth component is an array of line segments 
superimposed on the shaded area that show the phase shift due to the 
coupling. 
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For each value of the radial phase variable, the values of the extremes 
in amplitude as a function of the vertical phase are calculated and 
plotted. These are connected by a line, so one can also see the shift 
in phase caused by the coupling. Finally, there are two line segments 
that show the shift in the effective center of the oscillation. The first 
line segment extends from the origin (which is the center in the 
absence of the nonliiearities) to the center of the distorted curve with 
zero vertical emittance but the given radial emittance. The second 
line runs from this point to the effective center for the coupled motion 
using the given emittances in each plane.. From these two line 
segments, one may see the locus of the center for any other pair of 
emittances. The center is shifted because the sextupoles induce an 
effective asvrnmetic diw!e comnonent. 

Figure 2 Distortion plot in the vert.ical 
plane. 

The figures plotted for the vertical plane are similar, but there is no 
figure for uncoupled distorted motion, because such motion does not 
exist, nor is there. any locus shown for the center, because the center 
is always at the origin. 

Optional plots are provided where points are obtained by running 
through the set of radial and vertical phases. These plots are seen to 
map out the same region of phase space as the above distortion plots. 

Fitting of Distortion Functions 

The LATTICE fitting algorithms have been extended to include all of 
these values: the coefficients for the tune shifts and the values of the 
five distortion functions and their derivatives at any of the locations 
where they are calculated (sextupoles, bending magnets, and “slits”). 
It is also possible to specify the chromaticities to, for example, zero 
the chromaticities while minimizing some set of distortion functions or 
the tune shifts with amplitude. However, the user is not permitted to 
mix fitting specifications involving distortion functions with those 
involving the linear lattice. Moreover, he must avoid using variables 
that would cause any of the Courant-Snyder functions to change. This 
means that one may vary the field of sextupole magnets. It would be 
possible to eliminate this restriction with a massive rewrite of the 
code. The labelling of variables is exactly the same as for fitting 
lattice parameters, as is the execution of the fitting problem. When 
the iterate (i) command is given, the code examines the fitting 
specification and performs a fit of the lattice parameters or a fit of the 
distortion functions, depending upon the fit conditions. It does 
nothing if it discovers that the fit conditions inchide both types of 
conditions. A number of fitting algorithms may be chosen, including 
a very robust, albeit slow, method due to Powell and Brent that 
minimizes a global function without evaluating derivatives. When 
using this method, the number of variables need not equal the number 
of conditions. 

Comparisons 

‘lime Shift. 
Comparisons were made in collaboration with John Staples on three 
different lattices. The tune shifts with amplitude were calculated using 
the distortion functions and then compared with those derived by the 
FFT of the tracking data and also with the Anhannonicities calculated 
by MARYLIE. This was done for the LBL Advanced Light Source 
(ALS) lattice, for the Bevatmn Upgrade Lattice (BUG), and for a 
modified BUG lattice where MARYLIE could calculate the same 
effects. The comparisons are generally good with the exception of the 
MARYLIE numbers for the first two lattices; this is because 
MARYLIE cannot decouple certain higher order effects in rectangular 
magnets and also cannot properly do this calculation when the radial 
and vertical tunes are similar. It is necessary, when comparing the 
tracking data, to use relatively modest amplitudes in order to get good 
agreement. We assume this to be due to fourth and higher order 
effects that arise from products of second order kicks. 

Thus the third lattice was introduced with only sector magnets, no 
fringing fields, with vertical and horizontal tunes separated by about 
one (3.8, 2.65). and with the chmmaticities zeroed by sextupoles. The 
results for the modified BUG lattice are as follows: 

. . 
term StorttO~ FET MARYLIE 
dQ.ldW, 25.344 24.2 30.74 
dQ@W, 13.195 13.3 12.18 
dQJdW,=dQJdW, -10.150 -11 -11.40 

This is quite satisfactory for the calculation of these second derivatives 
by completely different methods. 

BESSY Il. 

Bettina Simon of BESSY has prepared a tune diagram showing tunes 
in a BESSY II lattice for increasing emittances. There are five 
groups, and within each the ratio of the vertical to horizontal 
emittances was kept constant. Tunes were obtained by Fourier 
transforms of the motion. This is shown as Figure 3. Godehard 
Wilstefeld has calculated the coefficients of tune shift with amplitude 
using LATTICE and has indicated these by adding line segments to 
this tune diagram. Each is seen to be tangent to the series of tune 
points, providing an excellent agreement where 4* and higher order 
effects (clearly seen in the curvature of the loci of tune points) are not 
important. 
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Distortion Coefficients for a SSC lattice. 
Both Ng and Collins have included an example of a possible SSC 
lattice containing ten superconducting dipoles per 80 degree symmetric 
cell; each dipole contains a systematic sextupole at low field. The 
question is whether sextupoles added to the quadrupoles are sufficient 
to compensate for the nonlinearlties induced by the systematic 
sextupole fields. LATTICE yields the same values within about 10% 
for the five distortion functions at each of the magnets as compared to 
those listed in Ng’s Table II, Moreover, the tune shifts agree exactly 
to the two-significant-figure results in Ng’s paper. 

Tracking. 
John Staples’~’ has added tracking to his version of LATTICE, together 
with the calculation of effective tune through a fast Fourier transform 
of the displacements at the beginning of the lattice for each turn. I 
have used this routine and then modified it to first calculate a proper 
starting point for the given emittances by using the distortion 
functions. It provides offline output and either online output or 
online phase space plots of the tracking data. Because the 
nonlinearities shift both the amplitudes and the phases, it is important 
to properly calculate the initial values for the two displacements and 
the two slopes if one is to get the correct value fur the amplitude- 
dependent tune and also the correct locus of the projected phase plot. 
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Figure 4 Compare radial phase space 
distortion figure with tracking points. 

In Figure 4, we show the radial phase space plane for a simple ring 
comprising n= magnets with a single thin sextupole and no vertical 
motion (W,=O). The plot is taken at the opposite side of the ring 
from the sextupole. The dotted line is the linear phase ellipse, the 
solid line is the figure plotted from the distortion functions (zero 
width because of the absence of coupling), and the points are the loci 
of 2anJ turns. It is seen that tire distortion figure and the actual 
tracking data are very similar and that the distortion figure predicts 
well the actual motion. 

The comparison for coupled motion is not as good as is seen in 
Figure 5 (radial plane) and Figure 6 (vertical plane). In these two 
figures, tracking data for 999 turns have been superimposed over the 
distortion figures. It may be that the tracking data are too influenced 
by the nearby sum resonance (Q+Q,=S) or the nonlinear resonance 
2Q+2Q,=l6, or there may be an error in calculating the distortion- 
matched starting point for the tracking. 
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