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Abstract 

We examine the effects of four types of errors in the RHIC’ 
dipoles and quadrupoles on the on-momentum closed orbit in the 
machine. We use PATRIS* both to handle statistically the effects of 
kick-modeled errors and to check the performance of the Fermilab 
correcting scheme3 in a framework of a more realistic modeling. On 
the basis of the accepted rms values of the lattice errors, we 
conclude that in about 40% of all studied cases the lattice must be 
to some extent pre-corrected in the framework of the so-called “first 
turn around strategy,” in order to get a closed orbit within the 
aperture limitations at all and, furthermore, for approximately 2/3 
of the remaining cases we fmd that a single pass algorithm of the 
Fermilab scheme is not sufficient to bring closed orbit distortions 
down to acceptable levels. We have modified the scheme and have 
allowed repeated applications of the otherwise unchanged three 
bump method and in doing so we have been able to correct the orbit 
in a satisfactory manner. 

Introduction 

We have selected four major types of lattice errors. They are 
the error in the integrated dipole field strength AD(BE)/BC, the 
axial tilt of the dipole AB, and the lateral displacements of the 
quadrupole along the two transverse directions. 

The rms values we have used are the following ones: 

A(BE)/BE = 0.5 x 10-s , A8 = lo-’ radians, 

Lateral quad displacements AoX = AoY = 0.25 x 10m3 m. 

A 2.5 o cut was imposed on all distributions of random errors. 
Sextupoles were modeled as thin lenses, but in all other aspects 
they were assumed perfect. Higher order multipole errors have not 
been included. Orbit correctors were assumed to be thin lenses. 
Both beam position monitors and correctors were assumed ideal, i. 
e. perfectly aligned with the axis going through an ideally placed 
quadrupole and monitors were assumed to have a perfect sensitivi- 

ty. 
The tracking/analysis code PATRIS was used to handle the 

simulation and analysis of closed orbit dtstortions and furth+ermore 
to correct them. The RHIC lattice we used was tuned with p = Sm. 

The Results of Statistical Treatment of Closed Orbit Errors in the 
Kick Approximation 

For the purpose of quick statistical treatment of the effects of 
magnet imperfections on the closed orbit, PATRIS employs an 
algorithm whose basic mgredients are given in the Courant-Snyder 
paper.4 PATRIS runs over 21 independen: distributions of random 
lattice errors and evaluates the appropriate orbit distortion rms 
values at the end of each magnet. The effects of errors are evaluated 
in the kick approximation, with nonlinearities. including those 
coming from chromaticity correcting sextupoles, being disregarded. 
The only place where nonlinearities are taken into account is 
evaluation of tune shifts and beta variations as a result of crossing 
of the sextupoles by a dlstorted closed orbit. No correclors are 
engaged at this stage. 

The resulting closed orbit distortions are displayed in Figure 1 
for the horizontal plane. We have similar results on the vertical 
plane. One immediately observes how the rms values of closed 
orbit distortions follow the local values of the relevant beta func- 
tions. In the insertions these rms values can become quite large. 

--- 
*Work performed under the auspices of the U.S. Department of Energy 

The results of the effects of the sextupole crossing by a 
distorted closed orbit are given in Table 1. One will notice that 10 
out of 21 distributions of random lattice errors produce unstable 
lattices when the sextupoles are taken into account, at the specified 
input rms values of magnet imperfections (the value -1.0 in the 
output is meant to signal an instability). The remaining 11 distribu- 
tions have produced significant beta variations and tune shifts. The 
bottom line displays the rms values of the tabulated quanlities. 

The Results of Realistic Closed Orbit Modeling. The Performance 
of the Fermilab Correcting Scheme on RHIC 

For a realistic closed orbit modeling, it is desirable to have a 
better scheme than that of a simple representation of lattice error 
effects by kicks. Furthermore, one would like to see what happens 
with closed orbit distortions once a certain well-defined sort of 
correction is implemented. Both goals have been attained in PA- 
TRIS, which on the one hand has the capabilities of simulating the 
lattice errors by incorporating them realistically into its 7 x 7 
transfer matrix, and which on the other hand can correct the orbit 
by engaging the Fermilab correcting scheme, based on the so-called 
three bump method. The correctors are assumed to be BPM’s at the 
same time and they have been placed beside focusing quadrupoles 
where the relevant beta function is large. Also in the arcs the orbit 
correctors at the same time appear to be adjacent to the chromatic- 
ity correcting sextupoles. 

We started our analysis by assuming somewhat too stringent 
demands on acceptable lattice errors. All four types of errors were 
assumed to be at 10e4 levels in the appropriate units. We noticed 
that PATRIS always found a periodic solution for the perturbed 
lattice, but could not correct the distorted closed orbit down to 
acceptable levels (-1 mm) for a significant fraction of the 12 
random error distributions we used. We attempted to cure this 
problem by introducing more correctors at additional locations, but 
improvements were almost negligible. We also attempted to correct 
the orbit with an overall scaling of evaluated corrector strengths, to 
see if we can undo a possible overcorrectionjundercorrection, but 
no improvement resulted. Finally, we decided IO abandon one basic 
assumption of the Fermilab correcting scheme: it is a single pass 
around, linear correcting algorithm. We made the necessary modifi- 
cations and enabled PATRIS to repeat the correction several times 
if necessary. This action solved the problem; the second pass 
brought the orbit distortions down to acceptable levels. From that 
point we moved on to a more realistic set of lattice errors as given 
in the Introduction for which case we had run 12 different random 
error distributions. 

In five out of these twelve cases badly distorted closed orbits 
were found, but attempts to correct them resulted in unstable 
lattices. These instabilities showed up in va;ious ways: in one case 
the code printed out det IM - II - 10 , which indicated the 
proximity of an Integer tune, and then stopped, in some other cases 
the code stopped and displayed the message “Tr M > 2” in one 
plane, and finally there were cases when the code crashed even 
before being able lo evaluate the one-turn map and its linearization 
M and to conclude that the lattice was unstable. 

In the remaining seven cases the modified Fermilab scheme 
clearly worked well. Their results are displayed in Table 2. The 
first three cases in the table are called “good” since the second 
correction sufficed. They arc followed by two cases we call “fair” 
because the results of the second correction are not IOO far from the 
levels which might be acceptable (- I mm). The last IWO cases we 
call “poor” because after the second correction the maximum excur- 
sion of the closed orbit is still huge (i.e. beyond 10 mm!). Further- 
more, the improvement between the first and the second correction 
is only about a factor two. In addition IO this, the quality of the first 
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correction is very low in both cases; indeed, very sharp readjust- 
ments of kick strengths between the first and the second correction 
are the most significant indicators of this questionable initial effi- 
ciency. However, the second correction brings even these two poor 
cases in line with the others and the third correction is then 
sufficienr. 

We would also like to mention that the worst of all working 
examples (the last example in Table 2), behaved as a sort of average 
example in the twelve pilot runs with the rms lattice error levels 
10-4, when all twelve sets of random errors generated a lattice 
whose stability was preserved in the process of orbit correction. For 
this reason, WC have retained this example as a kind of “average” 
case out of’ twelve cases and have decided to use it to represent a 
succession of rhree corrections in Figure 2. Only one superperiod is 
shown. We showed only the case of horizontal plane. There is a 
similar bchavlor in the vertical planes. 

Since the kick strength 68 = &BE)/Bp it follows that each 
milliradian of St3 translates into the integrated strength 6(BE) = 
(10m3 Bp) T.m = 8.5 kG,m at the top magnetic rigidity Bp = 850 
T,m. The maximum kick angle we picked up in the seven successful 
runs was 0.196 milliradians, which will then translate into a 1.7 
kG.m demand on the correctors’ maximum integrated strength. 

To address the issue of the hardware ability to make suffi- 
ciently precise readjustments between the two subsequent actions of 
the correcting algorithm, we call the reader’s attention to Table 3. 
In thia table we have displayed the kick strengths of the first 25 
dipole correctors in each corrective pass. The reader will notice the 
interesting fact thar between the monitors number 7 and 16 the 
algorithm does noi readjust the values of the kick strengths found in 
the first pass. Indeed this region is an insertion without sextupoles 
and one can show that the kick strengths evaluated by the Fermilab 
correcting scheme, for a given set of orbit distortions. in a region 
free from nonlinearities depend only on the elements of the linear 
transfer matrix in this region and nol on anything outside the 
region. The presence of external nonlmcaritlcs will only degrade 
the quality of the correction inside the nonlinearity-free region, i.e. 
the corrected closed orbit will not shrink to ;rero, but the corrector 
strengths inside the region remain unaffected. however, the pres- 
ence of nonlinearitics does affect correction strengths in the regions 
with nonlinearities. Therefore, if one takes two cases, one with 
sextupoles on and another with sextupoles off, then a one-pass 
Fermilab correction will Fhrink the corrected ciosed orbit distor- 
tions to zero at every monitor/corrector if all of the scxtupoles are 
off, and nowhere exactly to zero if some of the scxtupolcs are on. 
Furthermore, the two cases will have different kick strengths in the 
regions with sextupoles, hur the same strengths in the nonlinearity- 
free regions. 

From the foregoing it should also be obvious that the second 
and further passes must leave the correctors’ strengths unchanged 
in nonlinearity-free regions while at the same time keeping read- 
justing other correctors to get better and better orbit in each 
subsequent pass. In a real RHIC. of course, the insertions wdl 
confain nonlinearities from sources other than the chromaticity 
correcting sextupoles and the modified Fermilab algorithm will 
therefore readjust the insertion correctors in each pass too. 

We notice that with the hardyarc ability to readjust the dipole 
correctors to an accuracy of 10 of Ihe required maximum inte- 
grated corrector strelfth we can4change the kick strength by ap- 
proximately 0.2 x 10 = 2 x 10 milliradians. From Table 3 it is 
now obvious that the hardware will be capable of readjusting the 
kick strengths to move effectively from the second pass 10 the third 
one, which was enough in all our cases of successful orbit correc- 
tion (i.e. seven out of twelve cases when the lattice was not made 
unstable by the very first corrcctionj. The 10.’ readjusting accurac) 
might be insufflcient for a proper execution of the fourth$orrec- 
tlon..$ut an improvement of the hardware ability from a 10 to a 5 
x 10 level will guarantee a feasibility of the fourth correction, if 
ncedzd. 

Conclusion 

In our analysis of the closed orbit problem in RHIC, we have 
inevitably had to face the fact that this is by no means an easy 
machine to correct. Even at the very stringent 10m4 lattice error rms 
values, the Fermilab scheme could not correct the orbit to accept- 
able levels, in a single pass. A multipass generalization of the 
correcting scheme. which we implemented in PATRIS, worked well 
at this level of errors but failed in 5 out of 12 cases when the lattice 
errors were allowed to assume more realistic rms values. In these 
five “pathological” cases the lattice was still stable, the closed orbit 
was found by PATRIS but the first correction failed by producing 
an unstable lattice. Moreover, the uncorrected orbit was so grossly 
distorted that it exceeded physical aperture limitations in several 
places in the laltice. Under such harsh but not unlikely circurn- 
stances, the beam would never make its first turn around in a real 
machine and there would be no orbit at all to correct. 

The problem will have to be dealt with in the framework of the 
first turn around strategy. The orbit would then be already partially 
corrected (or pre-corrected) once the first turn around has been 
established, and at that point a multipass Fermilab algorithm will 
have worked. We are currently working in this direction, having 
two possible approaches or a combination thereof in mind. One is 
to invest more efforts in attempting to undo a possible 
overcorrection in the Fermilab scheme’s first pass. The other is to 
try first to establish a reasonably behaved orbit at reduced strengths 
of chromaticity correcting sextupoles. 
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Table 1. Closed Orbit Analysis with Sextupoles Tune 
Shifts and Beta Variations 

HORIZONTAL VERTICAL 

Dis. DBETA/BETA D-TUNE DBETA/BETA D-TUNE 

1 -0.61080e+OO O.l1678e+OO O.l7343e+OO 0.36227e-01 
2 0.21213e+OO O.l1024e+OO -0.10000e+01 -0.10000~+01 
3 O.l2634e+OO 0.53150e-01 0.32545e+OO 0.21784e-01 
4 0.74651e-01 C.29184e-01 -0.10000e+O1 -0.10000e+01 
5 -0.10000e+01 -0.10000e+01 -0.10000e+01 -0.lOOOOe+O1 
6 0,44044e+OO 0.59466e-01 0.21207e+00 0.67815e-01 
7 -0,75274e-01 0.31351e-02 0.83884e-02 -0.89551e-02 
8 0.54885e-01 0.58652e-01 0.31767e+OO -0.6077Oe-01 
9 -0.100OOe+01 -0.10000e+01 -0.10000e+01 -0.10000e+01 

10 0.32682e+OO 0.27776e-01 -0.lOOOOe+01 -0.1OOOOe+Ol 
11 -0.10000e+01 -0.10000e+01 -0.10000e+01 -0.10000e+01 
12 0.79245e+OO O.l0302e+OO O.l0874e+Ol O.l8147e-01 
13 0.26772e+OO 0.66674e-01 O.l2157e+Ol 0.31952e-02 
14 -0,10000e+01 -0.10000e+01 -0.10000e+01 -0.1000Oe+01 
15 -0.10000e+01 -0.10000e+01 0.98408e+OO 0.36816e-01 
16 0,15255e+Ol O.l1120e+OO -0.100OOe+O1 -0.1OOOOe+O1 
17 0,34190e+00 0.75801e-02 -O.l5200e-01 0.59675e-01 
18 O.l7660e+OO -O.l2165e-01 -0.41959e+OO -O.l1303e-01 
19 -0.1OOOOe+Ol -0.1OOOOe~Ol 0.20870e+OC -0.36469e-01 
20 0.41621e+OO 0.52842e-01 O.t34593e+OO O.t31115e-01 
21 0.60671e+OO 0,49663e-01 0.98606e+OO 0.43429e-01 

rms:0.56475e+OO 0.70768e-01 0.69632@+00 0.45952e-01 
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Table 2. Some Characteristics of Successfully 
Corrected Orbits 

Iter. Corr. Orbit Dist. Kick strength(mrad) 
Seed # Hax(mm) I-Ins ho comment Max rms 

1 6.150 2.015 0.12355 0.03075 
-23 2 0.358 0.133 Good 0.11658 0.03089 

3 0.003 0.001 0.116?5 0.03092 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .._........................... 

1 -3.246 1.336 -0.17355 0.04743 
17 2 -0.966 0.339 Good 0.15357 0.04412 

3 -0.006 0.002 0.15351 0.04412 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 5.228 1.689 0.12248 0.03580 
43 2 0.784 0.281 Good -0.08124 0.03205 

3 -0.004 0.001 -0.08124 0.03208 
. . . . . . . . . . . . . . . . . . . . . . . . . . ..I............................ 

1 8.389 2.863 0.13484 0.04460 
7 2 -2.245 0.742 Fair 0.13641 0.04224 

3 -0.046 0.015 0.13609 0.04227 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 -11.324 3.884 0.10809 0.03640 
25 2 2.803 0.948 Fair -0.09056 0.03175 

3 -0.029 0.008 -0.09056 0.03161 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 -25.296 8.099 0.19611 0.05392 
-7 2 11.974 4.052 Poor 0.09209 0.02962 

3 -0.315 0.111 0.09209 0.02932 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 -28.990 10.612 0.15719 0.04916 
-54 2 15.876 5.866 Poor -0.09022 0.03136 

3 -0.652 0.227 -0.09022 0.03040 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The reader will notice that we have displayed both the 
orbit distortions and the kick strengths to an excessive 
number of significant digits. This has been done merely 
to show what the algorithm does and it in no way implies 
that we expect the orbit distortions to be observable to 
such high accuracy. 

Table 3. Table of Kick Strengths (milliradians). 
Horizontal Plane 

ITER. # 1 2 3 4 5 

MON. Hag. 
# # 

1 6 0.042472 0.076945 0.046834 0.042339 0.042335 
2 34 0.112830 -0.004767 -0.005301 -0.005304 -0.005308 
3 62 0.037541 0.059505 0.049341 0.045199 0.045197 
4 90 0.138669 0.012961 0.010967 0.011046 0.011043 
5 118 -0.023418 0.005356 -0.026847 -0.031044 -0.031050 
6 146 0.076070 -0.028085 -0.029744 -0.030097 -0.030098 
7 173 0.036559 0.023843 0.022304 0.022606 0.022607 
8 185 0.027164 0.027164 0.027164 0.027164 0.027164 
9 205 0.022299 0.022299 0.022299 0.022299 0.022299 

10 217 0.003942 0.003942 0.003942 0.003942 0.003942 
11 229 -0.026121 -0.026121 -0.026121 -0.026121 -0.026121 
12 271 -0.008038 -0.008038 -0.008038 -0.008038 -0.008038 
13 283 0.013105 0.013105 0.013105 0.013105 0.013105 
14 299 -0.020396 -0.020396 -0.020396 -0.020396 -0.020396 
15 315 -0.018751 -0.018751 -0.018751 -0.018751 -0.018751 
16 333 0.009413 -0.025828 -0.032798 -0.035617 -0.035617 
17 361 0.077437 -0.008263 -0.010680 -0.011295 -0.011300 
18 389 0.069349 0.077276 0.058949 0.055566 0.055564 
19 417 0.127981 0.022859 0.021157 0.020951 0.020949 
20 445 -0.003765 -0.009032 -0.017066 -0.020455 -0.020456 
21 473 0.125491 0.006630 0.005244 0.005070 0.005063 
22 501 -0.046165 -0.025401 -0.045892 -0.049341 -0.049342 
23 529 0.046987 -0.060338 -0.061279 -0.061321 -0.061325 
24 557 -0.017000 -0.004707 -0.013266 -0.016718 -0.016720 
25 585 0.157191 0.036337 0.035051 0.035147 0.035142 

/~ Ii ~~~~~ -\/>jj\\; , 

Fig. 1. Expectation value in mm of horizontal closed orbit uncor- Fig. 2. A realistic RHIC closed orbit in the horizontal plane 

rected distortions in RHIC from 21 different simulations. uncorrected (u), after lst(+), 2nd (9)aand 3rd (A)correction 
step. 
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