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Abstract 

Influence of the insertion devices on the beam 
dynamics of the 8 GeV Chasman-Green lattice is studied 
quantitatively. With the typical parameters of an 
undulator and a wiggler, effects are examined in both 
linear and nonlinear beam behavior. Particle tracking 
with these devices are performed with an extended version 
of the computer code RACETRACK. It is clarified how each 
type of devices influences the beam, but the overall effect 
is estimated to be small enough for the machine operation. 

Introduction 

Study of the effect of insertion devices (IDS) on the 
rcvoluting particles is very important in the designing of 
IOW emittance light source dedicated storage rings. 
Anticipated effects of the insertion devices are: Breakdown 
of the original symmetry, distortion of linear optics, and 
introduction of nonlinear forces that may lead particles to 
additional resonances. The purpose of our present study is 
to make a quantitative estimate of the degree of influence 
in storage rings operated at the energy region of 8 GeV. 

The type of lattice considered is Chasman-Green (CG). 
in which we examine the effects for two low emittance 
modes under the given magnet arrangement: A “high beta 
mode” and a “hybrid mode.” While in the former mode the 
horizonlal beta function at every free straight section is 
kept high ( - 20 m). it is varied alternatively from high to 
low ( - 1 m) in the latter. High beta sections are suited for 
undulators, while low betas arc for wigglers. Since both 
modes require us to install strong sextupole magnets to 
correct the chromatic and geometric aberrations, stability 
of large amplitude betatron motions depends critically on 
the optimized sextupole fields. It is thus of great 
importance to estimate additional influence brought about 
by insertion devices, particularly from the “dynamic 
aperture” point of view. 

Our numerical calculation relics for the most part on 
the extended version of the computer code RACETRACK, 
which is motivated lo include the effect of IDS in the 
particle tracking [l]. 

Physical Descriotion 

Our analysis of the beam dynamics in the IDS initiates 
from the following expressions of the magnetic field 
which is known to be a good approximation of the actual 
distribution inside the IDS [2]: 

BX = k,/ky~Bosinhk,X.sinhkyY~coskZ, (1) 

By = BOcoshkxX.coshkyY.coskZ, m 

BZ = -k/kyBOcoshk,X~sinhkyY~sinkZ, (3) 

with 

k 2+k 2=k2=(2n/A)2. x Y (4) 

(X,Y,Z) is Ihe fixed frame of reference with Z being the 
longitudinal coordinate. The peak field and the period of 
the ID are given by B. and h. respectively. Above 

formulae, which keep only the first harmonics of the field 
variation in the Z-direction, satisfy the Maxwell equations. 
In particular, damping of the field in the X-direction can 

be expressed by the replacement k, + i I(. 

To find how the field distribution of Eq. (1) affects the 
betatron motion, equations of motion in terms of the 
conventional coordinate system (xp,yp,s) must be derived. 

This is done by L. Smith in Ref. 3 in the Hamiltonian 
formalism. Starting from the Hamiltonian of a particle in 
the field distribution of Eq. (l), canonical transformation is 
made from (X,Y,Z) to (xp,yp,s) via finding the equilibrium 

orbit in the ID. The new Hamiltonian is then 
approximately given on the view that 1 M kp (p: radius of 
curvature in the peak field BO) and by partially averaging 

it over the period length. The resultant equations of 
motion are; 

X” = - kx/(2k2p2)[kxx + kx3x3/6 + kxky2xy2/2] 

- cosks/p$(kx2x2 + ky2y2)f2 + kx2ky2x2y214 

+ (k X 4x4 + k 4v4)/24] Y . 

- y’yksinks/p.[ 1 + k 
Y 2y2/6 + k x2x2i2l. (3 

Y” = - ky/(2k2p2)[kyy + ky3y316 + kykx2yx2/?l 

+ cosks/p[k 2xv + k x* Y 2y2/2 

+ k X 2xy(k X 2x2 + k Y 2y2)/61 

+ x’yksinks/p,[ 1 + k 
Y 2y2/6 + k x2x2r2]. 

In Eqs. (5) and (6), terms up to fourth order arc retained in 
the expansion of hyperbolic functions and we have 
dropped the subscript p- We notice first that the linear 

effect of an ID is equivalent to that of a “pseudo” 
quadrupole which has different magnitude of focusing 
strength in two transverse directions. In most situations 
where k, cc k 

Y’ 
focusing in the x direction is weak, which 

can be interpreted as a result of cancellation between the 
focusing effect of the dipole and the defocusing effect of 
the magnetic edge. Major nonlinear forces come from the 
octupole like components as well as from the sextupole like 
components that have dependence on the position s. 
forces may seriously reduce the dynamic aperture 
low-emittance ring in which strong sextupoles are 
optimized to enlarge the dynamic aperture. 

These 
of the 
usually 

Numerical Estimations 

Table 1 lists the parameters of an undulator and a 
wiggler employed in this study. The insertion devices 
characterized by these parameters are expected to be the 
typIca ones installed in our future machine. The optics 
functions and the major parameters of the lattice are 
shown in Fig. 1 and Table 2 for high beta and hybrid 
modes, respectively. 

The degrees of linear optics distortion with one ID 
included in the ring are listed in Table 2. Calculation is 
made for the hybrid mode only, but the magnitude of 
distortion with one undulator in the high beta mode is 
obviously the same as that for the hybrid mode. We find 
that the undulator affects the optics negligibly, and also 
that distortion in the horizontal direction is negligible in 
both cases with the assumed relation k, = 0.2k,. The . 
vertical tune shift of 10m3 with an wiggler is tie most 
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Table 1. Parameters of insertion devices employed 
in this study. 

Field parameter 
Peak field 

Period length 
No. of period 

Total length 
Radius of curvature. 
in the peak field 
Vertical wave 

wave number 
Horizontal wave 

number 
Amplitude of the 
equilibrium orbit 
Photon energy 

Undulator Wignler 
K 1.0 25.2 
BO(T) 0.357 1.5 

h (cm) 3 18 

NP 166 12 

L (4 4.98 2.16 

P Cm) 74.7 17.78 
ky (I/m) 2.05 Xl02 34.23 

k, = 0.2ky kx = 0.2kv 
, 

P4w2 (I.Lm) 0.3 46.1 

E (keV) 13.5-t 64.0 

t First harmonic 

notable which is rcasonable due to the smallness of p. We 
note that, with the given parameters, focusing strength of 
the wiggler is nearly 20 times larger than that of the 
undulator, but the ratio of mcrcly several facors in the 
vertical tune shifts indicates that the difference is 
partially compensated by the smallness of beta where the 
wiggler is located and by the shorter length of the wiggler. 

The degree of distortion by a single ID being small, 
restoration of the optics is done locally by matching the 
bctatron functions to their original values at the midst of 
an achromat,ic arc and matching their derivatives to zeros 
at the center of IDS. By this way, linear optics is unaffected 
in the cells without the IDS. Quadrupole triplets on both 
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Fig. 1. Lattice functions for “high beta” and “hybrid” 
modes of Chasman-Green lattice. 

Table 2. Major parameters of the CG lattice. 

Circumference L(m) 1428.87 
Number of cells NC 

48 

Dipole field B(T) 0.61 
Length of free 
straight section L&C 6.5 

High beta mode: 
Natural emittance cx(nmrad) 5.67 

Betatron tune “X 42.22 

VY 16.16 

Horizontal beta @ ID Mm! 21.42 

Hvbtid mode: 
Natural emittance cx(nmrad) 5.27 

Betatron tune “X 51.22 

vY 19.16 

Horizontal beta @ ID Px(m) (hide) ‘22.00 
(low) 1.13 

side of an ID are used for this readjustment. Two 
quadrupoles are used for the bctatron matching, and the 
remaining one is adjusted to keep the tune shifts minimal. 
Numerical results of this procedure are also listed in Table 
2. Changes required for quadrupole strength are mostly 
within few percent and small. Remaining tune shifts 
amount to the deviations of the phase advance in the 
matching section from the original optics. In case the total 
tune shift is non-negligible tither because of the use of 
high field wigglers or installation of numbers of IDS, 
quadrupoles in every cell must be readjusted to recover the 
nominal working point, in combination with the local a 
matching. 

Table 3. Linear optics distortion by one insertion 
device and its restoration by Q matching. 
Lattice: Hybrid mode. 

Undulator Wirrler 
Before correction: 
Tune shift A”, +3.1 X 10-5 +1.6x 1O-5 

*“Y +3.6x 1O-4 +I.3 x 10-3 
Beta distortion @ ID (*P/P), -3.6 x 10-5 -1.0 X 10-5 

WP), -1.4 x 10-3 -5.1 x K-3 
After a matchum. 
Tune shift *“vx -8.0 x 1O-5 t4.3 x 10-4 

Av y +s.o x 10-5 +2.5 x lO-4 
Beta distortion @ 1D @P@), +I.4 x 10-3 -5.1 X 10-3 

@P4%y +5.4x 10-5 4.7 x 10-3 

Changes in the "QdQ6 -1.7 x lo4 +5.9x 10-4 

quadrupole *Q+Q7 -9.7 x 104 -1.1 x 10-3 

strengths required t AQWQS -3.8 x lO-2 -1.0 x 10-2 

t Quadtupole triplet is arranged s.t. Q8 sits closest to the ID. 

Effect of the nonlinear field of the IDS on the beam 
dynamics is examined by particle tracking. Numerical 
calculation is done by the extended version of RACETRACK 
which is developed to simulate particle tracking through 
the filcds of IDS. Among the scvcral functions provided by 
this code our present study relics on the one that 
integrates equations of motion derived by L. Smith through 
IDS: An ID is divided into small pieces thereby 
incorporaling the nonlinear forces as thin lens kicks 
according to Eqs. (5) and (6), up to fourth order in 
amplitudes. 

Due lo the oscillatory character of the nonlinear forces 
with the longitudinal position s, a carefully check of the 
convergence in the integration is made before proceeding 
with the dynamic aperture calculations. Since the 
magnitude of numerical error naturally depends on 
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number of times integration are made through the IDS, the 
check was made under the most severe cast of our study: 
200 turn tracking with 6 IDS in the ring. It was a bit 
unexpected, bur with the present parameters of the IDS, it 
turned out that a period length of an ID must be divided 
into as many as two hundred pieces to achieve 
convergence of the phase space variables within a few 
percent. Tracking without the convergence in most cases 
ended up in spurious amplitude growth in the vertical 
direction and underestimated the correspondent dynamic 
aperture. The resulting computation time becoming quite 
large, we satisfied ourselves with fewer turn number but 
took sufficiently large number of division. 

We calculated dynamic apertures for scvcral different 
C3SCS. What can bc found from rhese results are: (i) The 
reduction of dynamic aperture is more pronounced with an 
undulator than a wiggler (compare Figs. 2 and 3). This is 
plausible since as seen in Eqs. (S) and (6), the nonlinearity 
is enhanced with larger wave numbers which is the case 
with an undulator that has a much shorter period length. 
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Fig. 2. (Upper Left) Dynamic aperture with one undulator 
included in the hybrid mode. 
aperture of the bare lattice) 

(White circles: Dynamic 

Fig. 3. (Upper Right) Dynamic aperture with one wiggler 
included in the hybrid mode. (White circles: Dynamic 
aperture of the bare lattice) 
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Fig. 5. (Upper Left) Dynamic aperture with one undulator 
included in the high beta mode. (White circles: Dynamic 
aperture of the bare lattice) 
Fig. 6. (Upper Right) Dependence of the dynamic aperture 
on the number of undulators included. White square = 1, 
triangle = 8 (symmetric), dark square = 8 (unsymmctric). 
Optics mode: IIigh beta. 
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Fig. 7. (Upper Left) Dynamic aperture with 6 undulators 
and 6 wigglers unsymmetrically distributed. White 
triangle = n matched, dark triangle = u unmatched, circles = 
bare lattice. Optics Mode: Hybrid. 
Fig. 8. (Upper Right) Momentum dependence of the 
dynamic apertue with one undulator included. White 
square: dp/p = 0. triangle: dp/p = 0.01, dark square: dp/p = 
0.02. Optics mode: Hybrid. 
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Note that reduction of dynamic aperture mostly in vertical 
direction is due to the assumed relation kx qc ky. In Fig. 4 

phase space with 6 undulators and 6 wigglers included is 
shown in which we explicitly see the nonlinear distortion 
by the IDS in comparison with the phase space of the bare 
lattice. (ii) The vertical dynamic aperture of the bare 
lattice being much larger in the high beta mode, the 
larger reduction in aperture with an undulator brings it 
roughly equal to that of the hybrid mode (compare Fig. 5 
with Fig. 2). (iii) There i s no marked dependence on the 
number of IDS included (see Fig. 6). In Fig. 6 the 
dependence on the symmetry of the location is also check 
with 8 undulators in the ring. Although the dynamic 
aperture tends to be smaller in the unsymmetrically 
distributed case, we cannot yet conclude from this whether 
it is a general trend. (iv) Matching of the linear optics 
does not help to improve the reduced dynamic aperture 
(see Fig. 7). (v) No prominent dependence on the 
momentum shift is observed in the dynamic aperture 
reduction due to undulators (see Fig. 8). 
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Fig. 4. Phase space ob- 
tained from the track- 
ing calculations. 
ia) Bare lattice. . , 
(b) 6 undulators and 6 
wigglers unsymmetri- 
cally distributed. In 
case of(b), the phase 
space is close to the 
stability limit, 
Optics mode: Hybrid. 
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Summarv and Conclusion 

In the present study we have estimated the influence of 
the insertion devices on the beam dynamics of the 8 GeV 
Chasman-Green lattice. Effects are examined for a 166 pole 
undulator of period length 3 cm and a 12 pole wiggler of 
period length 18 cm. We have seen that linear distortion is 
more pronounced with a wiggler while nonlinear 
distortion is more pronounced with an undulator. These 
features are also confirmed in other works of lower beam 
energies. It was found that the degree of both linear and 
nonlinear distortion in the 8 GeV machine are not critical 
for the operation of the machine. Nonlinear effects of 
short period devices reduce the vertical dynamic aperture 
to a quite extent but it still exceeds the gap of the chamber 
required for these devices. These fortunate aspects should 
bc attributed primarily to the largeness of p’s of Ihe orbit 
in the IDS for the high energy machines as compared to 
those of the rings operated at lower energies. 

We wish to extend our analysis in future by working 
with a more realistic field distribution, and in addition, by 
taking various possible imperfections of the machine into 
account to examine the validity of our present conclusion. 
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