
PREDICTION OF LONG-TERM BEAM STABILITY 
USING HIGH ORDER TORROIDAL INVARIANTS 

John Irwin and Yiton T. Yan 

SSC Central Design Group* 
c/o Lawrence Berkeley Laboratory 

One Cyclotron Road 
Berkeley, CA 94720 

Introduction 

In light sources, damping rings, and in the SSC under- 
standing non-linear aperture limits for successful cost-effective 
designs is becoming ever more important. SSC injection requires 
107 turns, and beams collide for 108 turns. Ideally one would like 
to know the dynamic aperture for this number of turns, how it 
depends on tune modulations, and how sensitive it could be to 
“unknown or omitted physics” or choice of model for the lattice. 

The major obstacle to finding long-term stability limits is 
the fact that, trackinK 1 to 64 uarticles through the SSC lattice for 
lo7 turns requires 560 hours of CPU time on” the CRAY XMP. 
We have been pursuing a two pronged approach to overcoming 
this obstacle: 

i) looking for “early warning” signs that a particle is long- 
term unstable, and 

ii) creating maps that reproduce element-by-element tracking 
with sufficient accuracy and can be evaluated faster. 

The goal in i) above is to detect potential long-term instability in 
104 turns, and the 
speed. Together t IS would allow determination of long-term 8. 

oal in ii) is to gain a factor of 30 in tracking 

stability for 64 particles in 1 CRAY CPU minute. In this paper 
we discuss approach i). 

There are two ways that have been suggested to look for 
signs of long-term instability. They both rest on the belief that if 
a particle is long-term unstable, it will experience a significant 
and discernible amount of chaotic motion. This chaotic motion 
may be detected by 

a) looking for small departure from regular motion such as a 
slow change of an action invariant, or 

b) tracking two neighboring particles, and looking for an 
exponential growth of their phase space separation. 

This paper describes efforts of type a) above, and presents some 
recent comparisons with procedures of type b). 

The rms beam radius in the SSC at injection is about 
0.6 mm measured where px = py = 370 m. The dynamic 
aperture1 for 400 turn particle loss occurs at approximately 
x = y = 8 mm, and the so-called linear aperture, where rms 
x-smear = y - smear = 6.4%, occurs at about x = y = 6 mm (initial 
Px = Py = 0 always). 

In Figure 1 we show the linear Courant-Snyder invariant 
for 400 turns at x = y = 6 mm. The action J = (amplitudej2/2 
plotted here exhibits an rms variation of about 12%. Using 
normal form techniques and differential algebra methods 
described in reference 2, we can find higher order invariants. In 
Figure 2 we show a plot of the sixth order invariant for this 
same case. The rms variation of this invariant is about a factor 
of 10 smaller than the linear invariant. 

Figure 3 shows this same 6th order invariant plotted for 
10,000 turns. On this time scale the invariant exhibits large 
periodic swings, and we suspect the presence of a nearby 
synchrobetatron resonance. Figure 4, a phase plot of amplitude 
versus phase angle (cpx - ‘py - 3~~) for several initial amplitudes, 
confirms the presence of a large fifth-order resonance. Changing 
the cavity voltage so as to move off this resonance, we arrive at 
the results plotted in Figure 5. 

*Operated by the Univcrsitics Research Association Inc., for the 
Department of Energy. 
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Figure 1. Second order (Courant-Snyder) invariant for 400 
turns at x = y = 5.4 mm. 
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Figure 2. Sixth order invariant for 400 turns at x = y = 5.4 mm. 

In Figure 5 there still remains a significant amount of 
regular, high-frequency excursion from our approximate 
invariant. These high-frequency departures are uninteresting; 
they merely indicate that a true invariant would contain higher 
order terms. We can rid ourselves of them by “filtering.” We 
take a fast fourier transform of the data of Figure 5, remove the 
high order terms, and exhibit a plot of the low order terms in 
Figure 6. 
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Figure 3. Sixth order invariant for 10,000 turns at x = y = 6.0 mm. 
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Figure 4. Phase diagram. Sixth order invariant for 10,000 turns 
for x = y = 2.4,4.2, and 6.0 mm. 

(x10.4) 'lll'l'lll'l~(r'lxl 

L 

Jx w 
4.0 - 

2.0 - 

0 .,.,'.,,.""" "' 
0 2500 5000 7500 10.000 

Figure 5. New Synchrotron Tune. Sixth order Invariant for 
10,000 turns at x = y = 6.0 mm. 
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Figure 6. Filtered sixth order invariant for 104 turns for three 
initial amplitudes. 

What change of amplitude is acceptable on a 104 turn time 
scale? It is not possible to answer this question in an absolute 
way, but the following argument suggests an order of magnitude 
guideline. If as a result of chaos, there is a random component 
to the change in amplitude of Aa for each turn, then after N 
turns the expected change in amplitude would be Aa = fl 
Aa( and it follows in particular that 

Aaa(lO8) = 102Aaa(104) 

If we require (arbitrarily) that Aa(10% the rms beam radius, 
then we find 

h(1d) < 10-3 -- a (1) 

for amplitudes “a” that are about ten beam radii. As a result of 
these considerations we suggest using criteria (1) as a working 
definition of a long-term stability aperture. We have called it 
previously3 the “diffusive dynamic aperture.” Here a particle is 
within the “diffusive dynamic aperture (DDAY if it, and all 
particles of lesser amplitude, satisfy equation (1). 

Returning to Figure 6 we see that the particle at amplitudes 
5 5.4 are within the DDA, particles at amplitudes 2 6.0 are 
outside of this aperture. In Figure 7 we show these results 
extended for 105 turns. 
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Figure 7. Filtered sixth order invariant for 105 turns for three 
initial amplitudes. 
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We are aware that the long term changes in amplitude can 
arise from sources other than chaotic motion. However it is our 
opinion that it provides a margin of safety to reject such motion 
as unacceptable, even if its source is not from chaos. It is our 
opinion that significant long-term motion, on a time scale of lo4 
turns, is potentially hazardous, and should be avoided. 

In Figures 8,9, and 10 we show a plot of phase space 
separation for two particles started at the same amplitude, 
separated only by one part in 106. F. Schmidt has studied the 
behavior of such particle pairs in reference (4). According to his 
experience and criteria, particles at 5.4 and 6.0 mm are stable, the 
particle at 6.6 mm is unstable. This agrees with our 
determination. 

We wish to acknowledge the support and direction of 
Alex Chao, and helpful conversations with E. Forest, M. Berz, 
J. Peterson, and F. Schmidt. 
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Figure 8. Phase space separation for two particles at initial Figure 10. Phase space separation for two particles at initial 
x=y=5,4mm. x = y = 6.6 mm. 
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Figure 9. Phase space separation for two particles at initial 
x=y=6.0mm 
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