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ABSTRACT 

We study invariant surfaces in phase space by applica- 
tion of a symplertic tracking code. For motion in two de- 
grees of freedom we use the code to compute I(s),@(s) for 
.~=O,C~~~C~...nC,wheraI=(I~,Z~),cP=(~~,~~)areaction- 
angle coordinates of points on a single orbit, and C is the cir- 
cumfereiico of the reference orbit. As a test to see whether the 
orbit lies on an invariant surface (i.e., to test for regular and 
nonresonant motion) we fit the points to a smooth, piece-wise 
polynomial surface I = i(dl, 42). W’e then compute additional 
I)oints on the same orbit, and test for their closeness to I. We 
Gut1 t,hat data from a few thousand turns are suficient to con- 
struct accurate approximations to an invariant surface, even in 
cases with strong nonlinearities. Two-dimensional Fourier anal- 
ysis of the surface leads to information on the strength of nonlin- 
ear resonances, and provides the generator of a canonical trans- 
forirration as a Fourier series in angle variables. The generator 
can be used in a. program to derive rigorous bounds on the mo- 
tion for a finite time Y. 

1. INTRODUCTION 

Tracking of single particles by numerical integration of 
IIainilton’s equations has become a standard and indispensable 
tool in the drsign of new accelerators and storage rings. Never- 
theless, the question of how to interpret tracking data has not 
rrceivcd a frilly satisfactory answer. One approach is to com- 
pr~tr a quantity called the “smear,” which is a measure of the 
dcpartiirc~ from linear motion as observed in tracking.’ Through 
esprrieucr and guesswork, one tries to set a safe upper limit for 
t,he smear in latt,icc design. Unfortunately, there is no general 
and reliable rule for choosing a limit; indeed, the issue may de- 
pend on the type of lattice. It seems unlikely that a single num- 
ber, the smear, can adequately characterize the large variety of 
nonlinear effects ttiat might occur. 

!Ve describe a simple analysis of tracking data that gives 
muctl more detailed information about, nonlinear effects. In an 
rlcmciitary and direct way we find t.hr effect of each nonlinear 
resonance on thr orbit in question. This information might he 
119x1 ~II lattice optimization. Moreover, the method yields a 
generator of a canonical transformation, which can be used in 
a more aiiihitious program t.o set bounds on the motion for a 
finite time T. 

2. FOURJER ANALYSIS OF INVARIANT TORI 
AND NONLINEAR RESONANCES 

\\‘e discuss Matron motion in two degrees of freedom, em- 
ploying ar:glc-act,ion coordinates Q? = (01, &),I = (11,1~). The 
C’artcsian phase-space coordinates x = (11, x2), p = (pr , ~2) are 
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given in terms of the lattice functions @i(s) by 

CCi = [2Zi~i(S)]1’2COS~i , (1) 

pi = ~: = - [21i/&(S)]"" [sin 4, - kpi(S) COS pi] (2) 

According to Hamilton- Jacobi theory,’ an 
phase space has the form 

I = J+Go(Jj!B,s) 

On the surface, the action I is a function 

invariant surface in 

(3) 

of angle @ at each 
orbital location s. The value of the constant parameter J, the 
invariant action, distinguishes one surface from another. The 
generating funct,ion G satisfies the Hamilton-Jacobi equation 

H(J+G+,*.s)+G, = H(‘)(J,s) : (4) 

where 1f is the IIamiltonian, and subscripts to G indicate partial 
tlr~rivatives. 

The generator is 2n-periodic in Cp, and C-periodic in s, 
where C is the circumference of the closed reference orbit. Ac- 
cordingly, the invariant surface is a three-dimensional torus, a 
point on the surface being specified by the three coordinates 
(+41,&, s). A section of this torus at fixed s may be plotted in 
three-dimensional space. For instance, one may plot 1i(S = 0) 
as a function of both angles &,&. It is such a plot that we 
produce by fits to tracking data. The invariant associated with 
a surface I(@, s) is, owing to periodicity of G, the integral 

2* 3* 
1 

J=- 
(27r)” JJ d&d&I (+; s) 

0 I) 

In view of periodicity in @ it is natural to expand the generator 
in a Fourier series, so that Ge has the form 

G+ = ximgln(J,.~)e’m’Q 
m 

(6) 

The coefficients grn are familiar objects in canonical perturba- 
tion theory. As is well-known, the term img, is relatively large 
when m Y is sufficiently close to p/q, where p and 9 are small 
integers and Y = (r/r, ~2) is the tune. Beyond this qualitative 
st,atrment, it is helpful to know rather accurately the coefficients 
img,,. For a linear lattice these coefficients are zero, and to opti- 
mize a nonlinear lattice one can try to diminish offensively large 
coefficients by adjusting sextupole schemes, tunes, etc. A calcu- 
lation of the coefficients by perturbation theory is reliable only 
for very weak nonlinearities. Nonperturbative methods, based 
on iterative solution of the Hamilton-Jacobi equation,’ can deal 
with strong nonlinear effects, but as implemented at present are 
costly in computer time for large lattices. Although there are 
good prospects for reducing expense through improvements of 
these methods, an immediate route to inexpensive evaluation of 
the coefficients follows from the present work. 
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To find invariant tori in tracking data, we follow a single 
partirle orhit through several thousand turns. recording the val- 
ues of I, Cp a.fter each turn. The values of + = ($1, $2) are com- 
puted modulo 2a, and of course are scattered over the square 
(0,2~) x (0,2~) in a fairly random manner. To fit, the values of 
I to a smooth surface f(&, &) one needs a surface-fitting pro- 
grain that can handle scattered values of @. We have applied 
the Ih4SL3 routine IQIISCV, which uses Akima’s algorithm4 to 
put a smooth surface through the dat,a I(@). It does not smooth 
or average the data; the surface passes through each data point, 
and has continuous first partial derivatives. It consists of sepa- 
rate fifth-degree polynomials joined smoothly, each polynomial 
defined on a triangle in the @ plane wit,h vertices at data points. 

The program IQHSCV does not respect the periodicity con- 
dition, so that to apply it effectively we first have to extend the 
data by periodjcity from the square (0,2~) x (0,27r) to a slightly 
bigger square (-e,2n + t) x (-E, 27r + E). Otherwise, spurious 
jumps in the surface appear at the edges of the square, because 
without prrjodicity the continuity conditions have no power at 
the edges. We first take 0 < 42 < 2a and extend the data by 
periodirity in +1> and then extend the new set in 42. Fitting 
a surface to the extended data set, then restricting attention 
to the original square, we obt,ain a surface that is very nearly 
periodic and well-behaved at the edges. Next we compute the 
Fourier coefficients of the surface by an FFT program: and form 
the sum Eq. (6) as the final proposal for an approximate invari- 
ant surface. 
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Fig. 1: Invariant surface for SLC ,Vorth Damping Ring, ob- 
tained by a fit to trackin.g data. Il(Q1, @~)/JI plotted as junction 
of (a,,@~). Invariant action .I1 = 2.489 t 1O-6 m. 

In Figs. 1 and 2, we show results for the .Uorth Damping 
Ring of the SLC. Normalizing to the invariants, we plot II/J~ 
and I,/ Jz versus (41, &) at s = 0. The initial displacements of 
the orbit correspond to about 3.7 mm (horizontal) and 2.6 mm 
(vertical) at the septum magnet. A beam with emittance about 
100 times larger than the final damped emittance would contain 
orbits with such offset,s. Note that the origin of Ii/J, in the plots 
is at zero. The deviation of the surfaces from planarity, i.e., the 
deviation from linear motion, is impressively large. Each of the 
surfacrs was fitted to 8000 points obtained from 8000 turns of 
a symplcctic fourth-order tracking code. Bpcausr of the periodic 

“% 
/ 

/ 
“,4 

a, /’ 
,.I ‘I 

/ ::i’iAl 7 

Fig. 2: Invariant surface for SLC iNorth Damping Ring, ob- 
tained by a fit to tracking data. 12(@1, @2)/J2 plotted as function 
of (@I, @z). Invariant action 52 = 1.508 10e6 m. 

extension of data mentioned above, the fitting program actually 
fitted 9631 points, requiring 11.4 minutes on the IBM 3081 to 
make the fit. 

Taking an FFT of the surface in Fig. 1 or Fig. 2, and re- 
taining modes for 1 nzl I,1 rn2 I< 15, we obtain a Fourier series 
representation Eq. (6). of the surface, which agrees well with the 
original piece-wise polynomial representation, and also agrees 
well with tracking beyond the original 8000 turns. Defining a 
met,ric AI for the difference between the tracked orbit and the 
Fourier series (the sum of deviations divided by the number of 
orbit points) we find A!,/Jl = 1.4 10P4,AIz/J2 = 2.2 10e4 
for the first 8000 turns, and then very similar values for an ad- 
ditional 8000 turns. On using more than 8000 turns to find the 
piece-wise polynomial surface and more modes in Eq. (6), we 
did not see much decrease of AIi/J;. We did, however, main- 
tain values less than 2 low4 for AI;/J, over 32000 turns. In 
Table 1, we give the ten largest coefficients of r,, measured in 
meters. 
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Table 1: Fourier Amplitudes of GQ, 

m2 Wjma,) Wmlgm) 

-2 -2.06.10-7 -9.54.1o-g 

0 6.76.1O-8 -1.91.1o-g 

0 -G.61.10-8 2.40 .10-‘0 

-4 -4.12.1O-s -3.77.10-g 

2 1.21.10-5 -.g.57.l0-” 

-2 1.17.10-” 5.09.10-‘0 

-6 l.lG.!o-* -1.59.10-9 

2 -9.34.10-g 4.4s.10-‘0 

-8 -4.13.10-9 ~7.64.10-‘0 

4 2.!18.10-” 2X2.10-“’ 
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The approximate invariant surface in the form Eq. (6) for 
s = 0 can he extended to all s by integration of the Hamilton- 
.Jacobi equation, Rq. (4). Furth er iterations of the Bamilton- 
Jacobi equat,ion can refine the resultant generator’s accuracy, 
possibly on a bigger set of Fourier modes. This could he a &art- 
ing point for a thorough stability study, as outlined in Ref. 5. 

3. CONCLUSION 

For motion in two transverse degrees of freedom, it is useful 
to p!ot tracking data in three dimensions. When an orbit lies on 
an invariant surface, it is not difficult to construct an accurate 
Fourirr representation of the surface from data acquired in a few 
thousand t,urns of tracking. This provides a deeper view of the 
motion than the usual two-dimensional plots, since the effect of 
each potential nonlinear resonance is displayed. 
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