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ABSTRACT 

In this paper, a formalism to calculate the Iatt,ice functions 
and rmittances of a coupled electron/positron storage ring is 
presented. The lattice functions are calculated directly from 
the modal matrix of the betatron transport matrix for the ring. 
The ernittances and damping rates are then calculated from the 
invariants found in the diagonalized representation. In addition, 
a computer program is described which uses the formalism to 
calculate the coupled lattice functions, emittances and damping 
rates. The program can either reconstruct the closed orbit from 
BP11 data and dipole corrector strengths, or construct an orbit 
from misalignments entered into the lattice and then optionally 
correct the orbit with dipole correctors. The lattice functions, 
enlittances, etc. are then calculated about the resulting closed 
orbit. 

INTRODUCTION 

Coupling in storage rings has two effects. First, the hori- 
zontal and vert,ical dispersion functions are coupled and thereby 
modified. Second, the normal modes of the betatron oscillations 
rotate from the z and y axes. In electron/positron rings, both 
of these effects change the equilibrium beam size. This paper 
discusses a procedure to calculate these effects is discussed. The 
procedure is a generalization of Refs. 1 and 5. In addition, it 
is very similar to the work described in Ref. 2. The approach 
of Ref. 2 uses a 6x6 representation whereas the procedure dis- 
cussed here uses a 4x4 representation and the explicit form of 
the dispersion function. Wnile the 6x6 approach provides an el- 
egant tool for calculation, the changes in the dispersion function 
and the rotation of the normal mode axes are separated in the 
4x4 procedure: this makes it easy to use one’s one-dimensional 
intuition to understand the coupled case. 

In the next section invariants of the single particle motion 
(ignoring radiation) are found by diagonalizing the betatron trans- 
port matrix. Here, the normalization and the advantages of using 
a symplectic form are also discussed. Next, the effects of syn- 
chrotron radiation are included and the normal mode emittances 
and damping rates are calculated. Throughout, analogy is made 
with the uncoupled case to gain an intuitive understanding for 
the procedure. Finally, a parameterization of the coupled lat- 
tice is discussed, and then a program that performs the coupled 
calculations is briefly described. 

COUPLED LATTICES 

In a storage ring the linear betatron motion in the transverse 
planes can be described by a 4x4 transport matrix, 

T(s) = P(s, sg)Z(qJ) where g= (1) 

and P(.s, so) transports the motion from point so to point s. The 
transport matrix for one turn of the ring at point sc, M(sn), is 
given by P(s0 + C, so). When the lattice is uncoupled, M will be 
block diagonal and the normal modes of the betatron oscillations 
will be along the 2 and y axes. In contrast, when the lattice 
contains coupling elements, the normal modes rotate’from the z 
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and y axes. To calculate these normal modes, we will generalize 
a procedure discussed in Ref. 1. 

To analyze the motion, we diagonalize the transport matrix 

M. The transport matrix is symplecticf and assuming that the 
motion is stable, the eigenvalues will be complex conjugate pairs 
of the form Aj = eifij. Thus? 

E-%o)M(so)E(so) = (T’ e-“” e1p3 eh’J (7_) 

Here, ~1 and ~3 are the tunes of the two eigenmodes, denoted 1 
and 3, and E(Q) is the modal matrix which is constructed from 
columns of the eigenvectors and is, in general, complex valued. 

The modal matrix, E(.so), defines a coordinate transforma- 
tion to the eigenbasis at a point so 

f + 
I = E(so)t(so) C(so) = E-‘(so)Z(so) . (3) 

Since the eigenvalues are constant about the ring, the modal 
matrix must transform in the same manner as a position vector 

E(s) = P(s,so)E(so) (-1) 

Thus, the vector < does not depend upon s; it only depends on 
the initial values and is a constanl of the motion. 

An explicit form for f can be found by restricting the nor- 
malization of the eigenvectors so that they, like the eigenvalues, 
are complex conjugate pairs; the two eigenvectors in a pair then 
have the same magnitude. The modal matrix now has the form 

E= (:I Z;* f3 Z;*) , (Fj) 

where &?I and e‘3 are the eigenvectors associated with eigenval- 
ues e’fi’ and e’J’3, and the l represents the complex conjugate. 
With this restriction, the components of <will also be complex 
conjugate pairs and can be written in terms of a modulus and a 
phase: 

/ fieiei \ 

f= E-‘(s)?(s) where . (6) 

Here, Jr and J3 are single particle invariants and 81 and 03 are 
the respective phases. We will see that with an appropriate 
choice of normalization, these variables will be the action-angle 
coordinates for the two normal modes. 

Since the motion is derived from a linear Hamiltonian system 
and is described by a canonical transformation, there exists a 

constraint on the eigenvectorsf namely, 

Z~)Se;(s) = 
{ 

0 if Xi # l/X, 

const if Xi = l/X, 

where Zand X are the eigenvectors and eigenvalues, and S is the 
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anti-symmetric matrix 

/o -1 0 0 \ 

Thus, with an appropriate choice of normalization, the coordi- 
nate transformation to the eigenhasis will be an extended canon- 

ical transformation: i.e. 

ET)SE(s) = iS (91 

There are two advantages to this choice of normalization. 
First, the inverse of the modal matrix, which will be needed 
later, is trivial to find: 

E-l(s) = iSET)S . (101 
Second, the invariants, J1, 53, 01, and 03, are the action-angle 
coordinates for the two normal modes. Thus, as in the uncoupled 
case, the normal mode emittances are just the knsemble averages 
of the actions: 

Cl = (4) E3 = (53) . (11) 

Furthermore, as in the uncoupled case, the four-dimensional 
emittanrr is just the product, of the two emittances. 

NORMAL MODE EMITTANCES 

In an elect,ron/positron storage ring the emittance is dcter- 
mined by two competing processes: quantum excitation and ra- 
diation damping, both of which result, from the synchrotron ra- 
diation. III this section, we will first consider the quantum cxci- 
tation which is due to the discrete nature of the radiation and 
tlrcu discuss the radiation damping which results from the av- 
erage properties of the radiation. Our treatments of both the 
excitation and the damping are simple generalizations of the 
treatments given in Ref. 5. 

In the absence of synchrotron radiation, the single particle 
invariants. Jl and 53, can be calculated using Eq. (3), 

J1 = ~~)A(,+?(s) and J3 = z~)B(s)l(s) , (12) 

where the matrices A and B are 

Cl.?\ 

B+(s) z ;(E-13,E-ldk + E-‘4JE-13k) ‘--I 

These two matrices, A and B, are both real symmetric matrices 
since the eigenvectors are complex conjugate pairs. 

To calculate the change of J1 and 53 in the presence of radia- 
tion, two effects need to be considered: the radiation of photons 
and the replacement of the radiated longit,udinal energy in RF 
cavitirs. First, when a photon is radiated, the closed orbit is 
displaced by an amount proportional to the dispersion function. 
Thus t,he change in the betatron motion is 

where u is the phot,on energy and 17 are the four components 
of the dispersion function. Second, when the particle passes 
through an RF cavity, the particle gains energy in the longitu- 
diual direction, changing the slope of the trajrct,ory 

+ 
&‘=-x’6E: 

Eo 
SrJ’ = --@g . (15) 

IIrrc, OE+ is the energy gain in the cavity. Notice that the effect 
of dispersion in the cavity has not, been iucluded; this elTect is 
very slnall unless one is close to a synchrohetatron resonance. 

Combining these two expressions, Eqs. (14) and (15), and 
using Eq. (12), the change in J1, and similarly for 53, is 

SJl = $$A$+ +?A$- ti?~(21&krk + y’~~~~~) , (16) 
‘0 ‘0 

where the expression includes an implicit sum over the subscript 
li. Note that the term proportional to (SE+/&)” has been ig- 
nored; this term will be much smaller than t,he others. Also 
notice that the first term does not directly depend upon z while 
the others do; thus, the first term, which is the quantum excita- 
tion term, is a random walk diffusion term while the others lead 
to exponential damping or anti-damping. 

Initially, consider the first term of Eq. (16). Using radiation 
formulas for the emission rate of photons and Eq. (11) for the 
emittances, we calculate the average rate of change of the normal 
mode emittances due to the quantum diffusion. The result is 

de1 Uo 
- = c,y”- 

2 j- IG3 1JA;id.s 

dt To& f GJds 
(17) 

de3 U. 29 IG3@Blj’d.s - = cpy2- 
dt TOE0 $G2ds . 

Here, C, = 3.8-i x 10-‘3m, and lJo> 2’0, and Eo are the energy 
radiated per turn, the revolution time, and the energy of the 
particle, respectively. Finally, C(s) is the reciprocal of the local 

bending radius, G = l/p = d-, and is proportional to 

the total bending field. 

The other contributions to Eq. (16j are a bit more compli- 
cated to calculate. Since we are considering avera.ge effects, the 
photon energy u can be replaced by the power radiated P,6t. 
Unfortunately, P7 depends upon ?t; note that this was ignored 
in the quantum excitation calculation, but it has a small effect 
there. To include this depcndance, we rxpalld P-, in a power 
series: 

P?(S) = Py(0) 
i 

l+~(yG~+2Gy)+~(xCI-IG~) 
I 

, (1s) 

where G is defined above, and G, and G, are equal to the inverse 
of the horizontal and vertical projections of the local bending 
radius. In addition, 11-1 and k are the normalized quadrupole 
and skew quadrupole gradients: K1 = e/p~caL?~,la~ and I( = 
e/pocas,/ax:. 

To complete this calculation, Eq. (3) is used to write the I 

coordinates in terms of (. Then, one averages over part,iclcs, i.e., 
over the phases 81 and 03. Finally, the result can be simplified 
using Eqs. (9) and (10). One finds 

de1.3 
dt 

- --2W,3~1,3 where 
C'O 

al,3 = J-1.3- 
z&To ’ 

(19) 

and where the damping rates: cy1,3, have been expressed in trrms 
of the normal mode damping part.it ion fllnctions Jl and 2~: 

L71= 1+2Imag 
$ r/F’13 [GE-%z + CYE-ll&s 

f G2ds 

J3 = 1 + 2 1ma.g 
!f VJE-‘.~, [C,E-%Z + CyE-l&s 

$- CT” ds >- 
(201 

The corfflcients C, and C, are 

C, = G2G, $ ‘G,Ii, ; C, = G’G, + 2G,Iil . (21) 

Notice that the skew quadrupole terms have not been included 
in t,h~se ro&cients. t)lll they arr trivial to add. 
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At this point, tire equilibrium emittance is calculat,rd by sirn 
ply cqr~nt ing 111e rates of these t,wo procrssrs~ quantum excitation 
arid damping --~ Eqs. (17) and (I9), respectively. The final re- 
sults for the normal mode emittances are 

y2 2 j IC” l$Aijds 
cl = ““3 j G”ds 

02) 
y2 ‘j IG31;;Bljds 

t3 = ‘“z j-GZ& 

BEAM SIZES and LATTICE FUNCTIONS 
in this section the previous rrsults are used to calculate both 

the act,ion-angle representation for the beam position and the 
11rarrl sizes. In doing so, a parameterization of coupled lattices 
will be discussed; this parameterization was originally introduced 
in Ref. 6. While this choice of paramet,crs is intuitive, a few of 
tlrc: pitfalls will also be mentioned. 

‘T’hr particlr povit,ion can he expressed in action-angle co- 
ordinates using I+. (3) and (6). To parametcrize the coupled 
latt,ice, onr simply makes an analogy with an uncoupled lattice 
an.d defines /j frmct ions and phases. Thus, Eq. (3) becomes 

J(S) = l,imG~“s(@zl + 01) + ~~COS(~T3 + 03) 

!/is) = ~~(.os(~yl + 4) + ~m&os(~g3 + 03) , 

(23) 

where the B’s and phases depend upon s. Likewise, we can solve 
for the beam sizes: 

(r”(s)) = El,%l(S) + E3/?z3(S) 

(.ry(s!) = Cl &Gz$4&1 - 441) 

+ GJE-&COS(h - 493) 
(24) 

V(5)) = ~lS,l(~) + C38yd~) , 

or, in general, 

(zJzk) = cI2Ite(EjlEal) + t32Re(E,3Ekx) (25) 

111 terms of this parametc,rizat.ion, the elements of the modal 
matrix are 

El1 = &Gpe’~=L El3 = &&+ 

Es1 = &e+ E3$ = &jh 
(26) 

and the components Ez, and Eq, are found by taking the deriva- 
tives of El, and E:rJ with respect to s. Notice that, there are 16 
individllal parameters: four g’s, four d@/ds’s, four d’s, and four 
dq$/ds’s. This is cumbersome; only 10 iudepentlent parameters 
are needed to specify the matrix since the transfer matrix is sym- 
plectic. The dependances between parameters are found from 
the symplcctir condition Eq. (9), h t u unfort,unately, some of the 
drprndancrs are complex and do not simplify the relations. 

Anot,her point of interest occurs whm the ring is on a cou- 
pling rcw~~~a~~~c~. When the ring is completely uncoupled, the 
couplrd parameters reduce t.o t,he normal uncoupled parameter- 
ization: 

/jr1 = ijz > ,7y3 = PY 9 ,923 = &I = 0 , (27) 

where pL and By are the normal $ functions. Assuming that 
the ring is far from a coupling resonance, our parameters change 
slowly as the coupling is increased. This allows for an intuitive 
understarrding; a kick in the T plaue will lead to some small 
amplitutle vertical inotion. Unfortunately, when one is on a cou- 
pljrrg resonance, t,he eigcnvectors are no longer orientat,ed near 
the I and ~1 axes, even in the limit, of small coupling. In &is case 

1 
Yzl = BL3 = -l?z 1 

2 
By1 = py3 = $, , (28) 

and thus, it is not as simple to gain a feel for the motion. 

CEMIT 
The formalism described above has been implement.c~tl in a 

computer program called CElMIT (Coupled EhIlTtances). The 
program will input, an arbitrary storage ring lattice. Then, a 
number of random errors can be simulated, including magnet 
misalignments and power supply variations. Next, t,he closed 
orbit must be specified. Either the orbit is reconstructed from 
BPM (Beam Position Monitor) measurements which arc input, 
or the orbit is calculated from the bending fields and errors. 
In a lattice that contains nonlinear elements, the closed orbit 
caiculation is iterated until the desired convergence is attained. 
Finally, the orbit can be corrected with dipole correctors. Cur- 
rent,ly, the program uses a simple RMS correction procedure, but 
other methods can easily be implemented. 

After calculating the closed orbit, the dispersion function 
associated with the orbit is found. Then, using the formalism 
described above, the program calculates the normal mode emit,- 
tances and damping times. In addition, the coupled lat,tice func- 
tions and the beam sizes can be plotted. 

The procedure that has been described for calculating the 
emittances uses the symplecticity of the transport matrix M. At, 
this time, the symplecticity of iV is ensured by approximating 
the nonlinear fields in a magnet with a delta-function element 
located at the center. 111 the future, it is planned to improve the 
program by using a more detailed canonical integration scheme. 

Currently, the program has been used to study alignment 
tolerances in a preliminary damping ring design for the TLC 

(TeV Linear Collider).? In addition, the program was used to 
find vertical orbit bumps to increase the width of the coupling 
difference resonance in the SLC North Damping Ring, and it is 
also being used to study methods of using vertical separation 
to increase the number of bunches when colliding beams in the 
PEP ring at SLAC. 

SUMMARY 

A formalism for calculating the beam emittances and lat- 
tice functions in an arbitrarily coupled storage ring has been 
described. Throughout, analogy has been made with the un- 
coupled case to give intuition. Finally, the computer program 
CEMIT, which performs these calculations on an arbitrary stor- 
age ring lattice, has briefly been described. 

I would like to thank Ron Ruth for many helpful suggestions 
arid critiques, and Etienne Forest for useful discussions. 
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