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ABSTRACT 

\YP describe a non-perturbative method to solve the 
fIamilton-Jacobi equation for invariant surfaces in phase spacr. 
Thr problem is formulated in action-angle variables with a gcn- 
ctral nonlinear perturbation. ‘The solution of the Hamilton- 
Jacobi equat,ion is regarded as the fixed point of a map on the 
Follric,r cocfXcicrLts of the grncxrat ing function. Pcriodicity of the 
generator in tllr: independent variable is enforced with a shoot,- 
ing metllod. \Vc presrnt two mrt,hods for fillding the fixed poillt, 
and hence the invariant surface. .4 solution by plain iteration 
is <~cononCcal but, has a restricted domain of conwrgence. The 
Newton iteration is costly but yields solut;ons up to the dynamic 
aperture. Examples of lattices with srxtupoles for chromatic 
correction are discussed. 

INTRODUCTION 

This paper discusses a method to calculat,e approximate irl- 
variant surfaces (tori) for nonlinear dynamical systems. The 
surfaces are fou:i3from a numerical solution of the Bamilton- 
Jacobi equation. 

The theory is outlined in the next section. Several examples 
of solutions in two degrees of freedom are given in the following 
section. Fina!ly results are summarized. 

THEORY 

The Hamiltonian describing single particle motion in trans- 
verse phase space for a storage ring or synchrotron can be writ- 

ten in action-angle variables asp 

rr(o,I~s)=~(s)‘I+v(~,I,s) , (1) 

where 0(s) = (1//&(.9),1/&(s)), I = (Il,Iz), and 9 = (&,&) 
for tile two transverse dimensions. The Hamiltonian is periodic 
in s with periodicity C, the circumference of the ring. The per- 
turbation considered here is due to sextupoles used for chromatic 
correction, 

S(s) 7/(x, y. s) = -(x3 - 32$) 
3! 

(2) 

The, perturbation is expressed in action-angle variablrs through 
the transforrnat,ioris 

T = [2&a+)]+ cos dl , 

p, = -[21~/Pl(s)]i[sinpl +cr~(sIJcos&] 
(3) 

The y and py have similar transformat,ions. 

‘1’0 drrive the Hamilton-Jacobi equation (EIJE) consider a 
canonical transformation of the second type Fz from the old 
variables (a, I) to the new variables (Q> J): 

I:l(~,J,s)=~‘J~G(~,J:s) . (ill 
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This gives the transformation equations 

8 = Cp + CJ(9, J, s), (5) 
I = J $ Go(@, J, s), (6) 

fi(‘P. J,s) = 11(@, J $ G+, s) $ G,. (7) 

Subscripts indicate part,ial diffrrrnt,iation. Tllc Iiamilton-Jacobi 
equation is just, the requirement that the nrw Hamiltonian be 
independent of the nc’w angle variables: 

~~?(J,s)=~~(J+G.~)+G,+V(+,J+G~.~) . (8) 

Solutions to the HJE that are periodic in @ and .j give the 
invariant surface I(@, s: J) according to Eq. (6) The new RC- 
Lions J are constant. 

If G is represented as a Fourier series in & and 02, the HJE 
for the Fourier coefrcients grn for m = (ml, mz) f 0 is 

t&g,, + iR 111gm -c I</,,( J, s; g) = 0 . (I-)) 

where the vector of lcouricr coeficitrnts is writt,en y = {sir,} and 

'2 

‘&(J,s;g) = J se -%‘(@, J t G@, s) , 

G+(@, J,s) = x irng,,(J,~)c~~~‘~ 
(10) 

ITIES 

The set of modes used for the numerical calculat,ion is S. 

The first two terms of Eq. (9) can be consolidated by using 
the integrating factor einl’X, where xi(s) = s: du//?,(u) is the 

phase advance. The new vector h,,, = e’“‘X(‘)glll is the solution 
to 

&h,, = -c”“-X~~)I/,,(J, s; g(h)) . (11) 

Note that the h, are constant between nonlinear elements. 
They have a modified periodicity h,,(C) = ~‘~“‘~‘~h~~(0) which 
follows from y,,(C) = !/111(O). 

The numcricsl intcbgrnlion of Eq. (11) i. ‘loin an initial villllr 
is the map U on the initial conditions 

h(C) - h(O) = U(h(0)) (12) 
The periodicity of the h(s) and Eq. (13) definr a boundary value 
problem 

hm(0) = .?,i~~~, _ 1 “~,~(h(o’) 
(13) 

= ‘~L(~(O)) 

‘I%(: solution to Eq. (13) is the fixcltl point of the map :1(h) 
and is constructed to be the periodic solution to the original dif- 
ferential equation, Eq.(ll). This fixed point, is found by simple 
iteration for small betatron amplitudes and by Newton’s itcra- 

tion’ at large amplitltdes near unst,ablc regions of phase space. 
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TABLE I ~_ Single Ccl1 of the ALS 

C:=lGAIll. l/12 of ring, v,=l.18973, Vy=@.6815S 

Para.meters at beginning of element 

NAME POSITION STRENGTH LENGTH TWISS PARAMETERS PHASE 

I I?2 m-3 7n /A,721 km 01 w j$ 1, rads $2, ruds 

SD 5.775 -433.090 .20 1.472 10.696 -1.779 I 8.401 2.430 ’ O.SFG 

SF 6.573 115.615 .20 3.984 1.580 2.272 0.417 2.819 1.222 

SF 9.325 115.615 .20 3.137 1.443 -1.963 -0.26s 4.600 2.925 

SD 10.425 -8S.090 .20 2.297 7.603 2.345 -7.OG2 4.386 3.395 

In Newton’s method F(h) = h - /1(/l) = 0 is sol\~l lry ihe 
ilcralion 

0 = F;,,(V) + CL&(/L’) (h’+’ - II’),,. (14) 
IL 

The Jacobian of the map is D,, = a&/ah,. Its calculation 
by divided diffewnccs is adequate but requires two evaluat.ions 
of the map for each inclependent, complex Fourier amplitndc. 
In t\~o dimensions, the number of independent amplitudes is 
232ri~Vf~ + Ml + Af? if modes are chosen for Irn,l < M, with 
i = 1.2. i\t typical vales of AT, = 16 this gives an excessive 
1111111ber of 1110drs. 

110w~~~~~1~ usilq Broyden’s formula 
6-7 

to update the .Jaco- 
bian, and sclrct,ing only the numerically significant modes for the 
nlo(lc set S reduce3 the computa.tion time. Broyden’s formula 
gives an estimate for t,he Jacobian Iii+’ at the next iteration 
giver] t.11~ Jacobian I?’ at II’. 

I)‘+, _ r~’ + [F(/f’+“) - F-(/L’) - w(h’+l - h’)](h’+l - hy- 
- 

(I/++’ - h’ll’ 

(15) 
‘1’1~~ resulting Newton-Broyden iteration does not converge 

as fast. as the real Newton iteration, but it has the advantage 
that Lhc next Jacobian is given after only one more evaluation 
of the map. Only one full divided difference calculation of the 
.Jacobian is done at the start of thr iteration. 

Furt~l~t~~~u~~r, using only modes that contribut,e significantly 
to till, cvalnation of Ca reduces the number of map evaluations 
i 11af must tw done for the first Jacobian calculation. Xlodci are 
sclc~ tc~l \rith values of llnlhIt,ll/llJl\ above a cut-off. All other 
n~otlcs aw consistently ignored. 

Once t,llc* gln(,so) arc k nown the invariant surface I(@, sg: J) 
is givc>u according Lo Fqs. (6) and (10). 

NUMERICAL RESULTS 

In this bt’rt ion the design for a single cell of t,he Brrltclcy 

:\ilvanctd Light Source’ (Al,S) 1s analyzed. SW Table I for 
plranlcii~I~s 01‘ 1 hr single cell design. It has been studied with 

thr oli<: tli~ncnsional IIJE t,echniqur” but the problem is much 
lriurr tiilicrlll ill 1 Iv<, tlirr~c~nsions ll<TilllSC~ of the Iilrge nulnlwr of 
ilKKk!S. 

I’iqllrc 1 is a stabilily diagram for the AI,S cell. It gi\(xs 
i:litial posiiiolls in .r and u of stable (+) and unstable (*) tra- 
jixctoricxs. ‘I‘hc tr.nJector.ics \vrrc tracked for 5000 turns 

by means of a ‘4th.order symplectic integration9 of the equations 
of motion in the sextupoles. Trajectories that grew larger in 
amplitude than some cut-off are unstable and those that did 
not are stable. The points A and B correspond to the invariant 
surface solutions discussed below. 

Y (mm) 12.5 ; ))! 32 * k * kc 3a 3i ‘: & _ 
I Et + n u ~txi2(ILu 

>,I + ft xi e xi ix ix >:I II !J 
+ + il !a It 32 $1 !.i it 32 - 

+ ii II II u ix ;:i 2 x 

+ + fTt%l ,l x ii it 3 

+ + ++++x+itx 

+ + +a+ + + + +T(:x 
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Fig. 1 Stability Diagram for single ccl1 ALS 

In case A, the invariant surface is found for the constant 
action Jl=J2=5 x 10e7m. It gives initial displacements in (s. y) 
of 3.5mm and Z.ltnm, respectively. for 41 = 42 = 0. A sur- 
fact of section of the invariant, torus, corresponding to a sin- 

gle value of s, is plotted ‘” as I,(@ ,s;J) for t = 1.2. SW 
Figs. 2 and 3 The map is evaluated by a 4thorder Rung+ 
Iiutta algorithm using 2 steps per magnet. The mode set is 
selected from i,he set with ]mtJ 5 13, the selection criterion 
being ~~rnhIll~~/~~J~ > 10-s. This yields 65 modes of the 36-1 
inllcpendent. lnodps in f,he truncat,ed mode set,. Convrrgence 
of the Newt,on-Broyden iteration is gauged with the parameter 
1‘,+1 = lJh”+l - h’((/(lh’ll, for the (i + 1).th iteration. The it- 
eration converges quickly, by about 6.4 x lo-” per iteration, to 
the final value of ~3 = 4.03 x 10-l”. Agreement of the invari- 
ant surface with the point,s (*Tr17’) found from the tracking 
code is rscellcnt. The difference brtween the surface and the 
points was quantified as 6, = CL, IJp’(@T) - l$//(.VJ,.) a.nd 
similiarly for the y plot,. Ilor this cask, 8, = 4.43 x IO-” iintl 
6, = 4.56 x 10s5, with N = 600. 
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Fig. 3 Case A! 51 = Jz = 5 x lo-‘m, Y Action 

In case B, the invariant surface for Jl=Jz=5 x 10F6m gives 
initial displacements of 12.4mm and 6.9mm in (z,~) for & = 
42 = 0. See Figs. 4 and 5 for the plots of the surface of section. 
This case requires more steps in the Runge-Kutta evaluation of 
the map and more selected modes than the previous case, as is 
typical of cases close to unstable regions of phase space. The 
evaluation of the map is performed with 6 Runge-Iiutta steps 
per magnet. There are 127 modes selected for llrnhlI1/l//lJll > 
2 x 10W5. The iteration converged much more slowly t,han the 
previous case taking 14 iterat,ions to reach r-14 = 3.56 x 10-13. 
decreasing by 0.15 each iteration. Agreement with tracking is 
still good: S, = 1.83 x 10m3 and 6, = 1.66 x 10e3. 

At small amplitudes simple iterat,ion converges and requires 
much less compnt~ation time. For the ahova cell convergence 
occurs around 51=,1x=5 x 10-“m or ;c=lmm, y=0.6mm. 

SUMMARY 

The Hamilton-Jacobi cctuation was solved numerically for 
the in\,ariant surface in two degrees of freedom. Several examples 
were given and a convenient way to plot the results was shown. 
For solutions at large amplitude, mode selection and Broyden 
updating of tile Jacobian were employed to save considerable 
computing time. 
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Fig. 4 Chase B, JI = Jz = 5 x lOpGIn, .ri Action 

\ I / 
Fig. 5 Case 13, Jr = J:! = 5 x lo-“m, Y i\ction 
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