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Abstract: An accurate knowledge of the beam 

sizes at collision points is of vital interest for 

several important aspects of collider's operation. No 

device is usually available to provide direct infor- 

mation and one relies on the scaling of beam size 

measurements performed elsewhere, using an acquired 
knowledge of amplitude functions. This paper reviews 

two methods often used to establish 13% at the ~0111~ 

sion point, appraises their performances (with nume 

rical applications to the LEP) and proposes an addi- 

tional procedure to get ten times more accurate 
results. 

1. Introduction 

Most colliders do not have detectors at col- 

lision points to directly measure the beam sizes, 

despite of their importance for the optimization of 

machine luminosity, for the interpretation of beam 

beam effects, for the normalization of crosssec- 
tions, etc. The best estimates for og z are 
obtained from beam sizes ox s measured elsewhere 
in the machine (with a wire s)canner or with a syn- 

chrotron radiation telescope) and scaled to the col- 

lision point by use of the betratron amplitude func- 

tions: 

0 :,z = 4,Px z Ox 2 * 9 
(1) 

Among the factors in Equ. 1, 5; z is the most 

difficult to establish with accurac;. In this paper 

three measuring procedures are examined and qualified 
for their achievements. The first one, described in 

para. 2, relies on measuring the amplitude of cohe- 

rent oscillations at a close by monitor, and gives 
good results in the defocussing plane only. In a 
second procedure the Q-shift is measured which re- 

sults from a known variation of strength in one of 

the insertion quads (see para. 3). The accuracy of 

this well known method is severly limited for practi 

cal reasons. Therefore a refined procedure, involving 
antisymmetric perturbations of both insertion quads, 

is analysed in para. 4 and leads to far more accurate 

values for 82 (focussing plane). 

2. Determination of 5* from a measurement 
ofcoherent oscillation amplitude 

Beam position monitors can be used to settle 

the local amplitude functions in a procedure where 

coherent oscillations of a known amplitude are mea- 

sured for different phases, thus eliminating the 
closed orbit. The monitors closer to the collision 

point must be used, in order to avoid uncertainties 
in modelling the amplitude function to the collision 
point. In the absence of beam-beam force the ampli- 

tude function 5(s) in the drift space inbetween the 

insertion quads can be expressed in terms of its 

minimum value 0, and of an asymmetry parameter E: 

o(rQ) = t3m + (+Q.c)2/Bm 

The two Equs. 2 can be solved for c 
since 5* 2 B,,, + c2/0, (see Fig. 1) 
after some algebraic manipulations 

f,j* I ; {E - (~2216Q2n2)1'2} 

with c ; 5(tQ) t 5(-Q), n = B(+Q) - 5(-Q) 

(2) 

and B,, and 
one gets, 

(3) 
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Fig. 1 : Layout around a collision point 

Let us see now the error propagation from the 

measured values of B(+Q) to the wanted 5*. If 

tdS> is the r.m.s. measurement error, one has 

CdF+> = <AT)> = r'2 <65> 

and since 5 and n are statistically independent 

it follows that 

c&5*> = r/2 t(a5*/a<)2 + (a5*/an)2$1'2 <&a>. (4) 

The partial derivatives in Equ. 4 can be de 

rived from Equ. 3 and finally the error sensitivity 
is demonstrated by the coefficient K relating the 

relative errors: 

<as*> <ao> 
i3* =cBo 

Table 1 : Numerical application to LEP 

Plane 1 focussing (z) 
I 

a* 
B(Q) 

5 
n 

65*/6< 
dJ3*/6Tl 

K 

0.07 m 
195.5 m 

391 m 
2.8 m 

1.86 x 10-4 
1.79 x 10-3 

7.15 

Table 1 illustrates the 
Q = 3.7 m. With the assumption 

defocussing (x) 

1.75 m 
9.6 m 

19.2 m 
0.14 m 

0.142 
0.003 
1.10 I 

case of LEP where 
that 5(Q) can be 

measured to 1 %, the smallest controlable value for 
the beta difference is n z c&n> = r12 5(Q)/lOO. 

The result is very surprising: in the focus 

sing plane the relative error is increased by nearly 

an order of magnitude, just because the symmetry of 

the amplitude function around the crossing point can- 

not be guarantied! 
In practice the numerical application given 

above is of academic interest because no position 

monitor exists on the inside the LEP insertion quads. 

But a similar derivation can be done for BPMs located 

beyond the quads (see Appendix A) and the resulting 
accuracy on 5, * is even worse ill. 

CH2669-0/89/O-1301$01.OD01989 IEEE 

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989



3. Determination of B$Jrom the Q-shift induced 
by quadrupole gradient perturbation 

When a small change of strength Ak is 
applied to one of the insertion quads the resulting 
Q-shift is given to first order by [2] 

AQ =E j B(s)ds 

Or 
quad 

E = 4*hQ 
Lbk ' (5) 

with L the magnetic length of the quad. In most cases 
this measurement is not accurate in the defocussing 
plane due to the small induced Q-shift and will be 
disregarded in the following discussion. Let us apply 
it in the focussing plane to either quad and obtain 
two independent values called B+ and 8. We are 
now back to the problem of para. 2 of computing E*. 
The exact solution is derived in Appendix B and reads 
in its simplified form (valid fcr all practical cases 
where 8 >> 28): 

si: 
c E [l + s2/P21 

5 
(6) 

where F = B+ + 0 -' n = B+ - B , and N = 2 Q 2 and 

P = 4e ace two constants. Equ. 6 reveals very 
clearly the respective influences of '$ and n on 
the amplitude function at the collision point. 

The accuracy of the result can be analysed as 
follows. For' a value of B one has to measure twice Q 
and k to get AQ and Ak used in Equ. 5. Since all 
measurement errors involved are independent, they can 
be added in quadrature to give 

<AZ/> = zi [2 (%I2 + 2 (%I' + ($%211'2 (7) 

where <bk>, <6Q> and <dL> ace the r.m.s. 
errors. The error propagation is now the same as in 
para. 2 where only 8 must be replaced by B and the 
partial derivatives of Equ. 6 have to be introduced 
into Equ. 4. 

Numerical application to LEP : The best feasible mea- -__ 
suring accuracies are taken as: 

Quadrupole strength : <dk>/k = 2 x 1O-5 
Magnetic length : <&Lb/L = 10-3 
Q measurement : t&Q> = 2 x 10-d. 
simulations with MAD [3] show that for 

Ak = 1O-3 the Q-shift (AQz = 0.0413) is at 
the limit of linearity for Equ. 5 and should also 
just be acceptable in the working diamond. 
Ak = 10M3 is used for computing the best perform- 
ances shown 'n Table 2. Other relevant parameters are 
[41: Q = 3.7 m, L = 2 m, k = 0.1646 m-2, for the 
insertion with nominal 0; = 1.75 m and 8; = 7 cm. 

In Table 2 the different lines correspond to 
values of the unbalance parameter rj = B, a- 
chosen arbitrarily but always larger than the measur- 
ing accuracy <6n> = 3.1 m obtained from Equ. 7. 

Table 2 : perfprmances for B* measurements 2-- .--- 

1 I : I ,I 1 2 I I I 
518 1 3 1 1.4 1 7.3 
518 1 5 1 2.3 1 7.8 
518 1 7 1 3.2 1 8.5 
518 1 10 1 4.6 / 10.1 
518 I 20 I 9.3 I 19.2 

-- -l-I 

1 

L 

% 
7.7 

12.0 
15.4 
18.6 
19.5 

Because of the very low beta, the sensitivity 
to the exact waist position is extreme and values of 
q24m should be avoided by all means. The 
errors, shown in column 5, mainly result from the 
second term in Equ. 4 and would reduce if only n 
could be measured with a greater accuracy. This is 
done in the next paragraph. 

4. -antisymmetric gradient perturbation method 

In order to apply higher gradient pertucba- 
tions without boosting AQs beyond 0.04, one can 
apply simultaneously +Ak on one quad and -Ak on 
the other quad of the insertion. The observed tune 
will then be : 

Q, G Q, + 2 [Ak + o Ak2 + O(Ak3)l (8) 

where Q corresponds to the unperturbed case, 
0 

q = 8+ - 6 , a Ak2 and O(Ak3) are higher order terms 

in Ak. If the signs of the perturbations are re 
versed, the measured tune becomes : 

Q, = Q, - k; [Ak - (I Ak2+ O(Ak3)] (9) 

and the difference AQ = Q, - Q, reads : 

AQ = 2 [Ak + O(Ak3)1 (10) 

In Ew. 10, Qo has disappeared and the 
second order terms vanish so that the linear expres- 
sion holds up to third order in Ak and provides for 
an accurate determination of n. Simulations made 
with MAD [3] have shown that the linearity is pre- 
served up to Ak 5, 5 10-3. Therefore using anti- 
symmetric perturbations leads through Hqu. 10 to 
values of n 20 times more precise than achieved in 
oara. 3 since c&n> now reads: 

<All> = 
2d-h c&Q> 

L Ak 

This result can be used to get a much higher 
accuracy in the determination of 8: given by 
IXqu. B6, when the value of 5 is obtained by the 
traditional method of para. 3 and the value of n is 
given by Equ. 10. 

The accuracies on 82 got by both methods 
are shown in Fig. 2 versus n, for three values of 
the Q-measuring resolution <dQ>. 
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5. Conclusions 

The three procedures discussed above are 
fully complementary to provide 8% with the best BCCU- 

racy. They all rely, in the analytic derivation, on 
the assumption that there is no beam-beam effect and 
should thus pceferabiy be performed with a single 
beam. 
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APPENDTX A : Propagation of the beta functions from 
the waist to the nearest BPM's 

Let the waist near a collision point be 
characterised by 8m and c (see Fig. 1). The 
transfer matrix from bhe waist to the BPM reads : 

M (s2/s1) = (; :) (1;; 1;;) (: ‘:‘) (Al) 

with C. 'l and d defined in Fig. 1 and aij the 
quad matrix elements. 

Twiss parameters transform through M like [5]: 
2 

82 = Yl Bl 
2 

- 2 mllm12 Ol + m12Y1 (A2) 

Since we have Bl = Em, ol = 0 and yl = l/13,, we can 
write the betas at the two BPM's as: 

8t 5 A2 Om + [A (1 T c) + B12/Bm (A3) 

with A 2 all + a2ld and B = al2 + 8226. Using again 

5 = 0, + B_ and n = 8, - B- the two Equs. A3 become 

n = -4Ac (P A + B)/B,,, (A41 
which reduces to: 

?B 
E = m 

E (AS) 

with E = -4A (g A + B) and: 

E = 2 A2 Bm + 2 [!l A + B]',Em + 2 A2 c2,8 
m (Ab) 

Equ. A6 can be solved for 8, after substitution of 
c by use of Equ. A4 and reads: 

The final 

am = 1 - [E 
2 - g2 - rl ] 2 l/2 

4 A2 (1 + n2/E2) 

result for B* is: 

(A7) 

-. 

** =I - [C 
2 2 l/2 - E2 - n ] (A8) 

4 A2 

APPENDIX B : cessions for Dm, f and i3: in terms 
of8+ and fi 

The variation of 8(s) inside a focussing quadrupole 
can be expressed as [6]: 

B 812+4 
B(s) = $ (1+cos US) + -o--- ail 

2m2Bo 
Cl-COS 0s) + F sin ws 

(Bl) 

where the origin of s is taken at the quadrupole en 
trance, 0, and So are initial conditions, and 
ta2 = 4k. 

The average value B obtained by integration 
of Equ. Bl over the quadrupole length, L, is: 

B . 13e2+4 8’ 
ij = $ (I+?) + o- 

2Eow2 
(1-y _ : (s?.y _ f) 

with u = WL. (B2) 

Let us now express the initial conditions in 
terms of the beta function existing around the 
collision point and given by Equ. 2: 

6 
Of 

= D + (PA2 
m 

Bin 

i3’ = 
2(r! 5 E) 

Of am 

(B3) 

Note that on either side one gets 
2 8' +4 

..s.--~-- 4 
B 

0 ‘rn 

The difference and the sum of the average 
betas measured on both quadrupoles can be expressed, 
using Equ. B2 and Equ. B3 : 

11 = E+ - ii = -?(I+ +) + s& (COS uu- 1) 
m m 

which reduces to 
' 'm 

==-F- (84) 

with P = -28(1 + sinu) + ; (COS ; - 1) ; and also : 

P2 + a2 + c2 
t = ii+ + z = - p (1 + 3 + m 

4 + - (1 _ ?+L) _ 5 (CDS ; - l), 
2 ofl m m 

which can be expressed, after substitution of Equ. B4 
for L, as: 

M(l + n2/P2) 8; - ESm + N = 0 , 

sin u with M=l+- 
U 

49. cos 11 - 1 N = n2(1+?) + $ (1-Y) - ; ( 
U 

1 

w 

and the solution for 8 is : 

B _ F. - It2 - 4 :: N (1 + n2/P2)]1'2 
m 2 M(l + n2/,2) 

(B5) 

Since B* = B* + c2Mm. using Equ. 84 one has 

8:: = Bm (1 + n2/P2) 

so that finally 

B; = E - [E 
2 - 4 M N (1 + n2/P2)]1'2 

21 (B6) 
I I 

Since c2 >> 4 N N, Equ. B5 and B6 can be 
simplified by expanding the square root to first 
order and one gets 

and 

Bm = ; 

l3; c f (1 + n2/P2) (B7) 
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