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An analytical derivation of the horizontal smear due to sextupoles and 
ortupo1es is presdrd. A g eneralized expression for the horizontal 
smear due to all multipoles is derived. A two degree of freedom ralco- 
l&ion yields the smear due to sextupolrs and “ctupoles. Exprrimen- 
t al observations of the smear induced by special sextnpoles have been 
made at thr Fermilab Tcvatron and our calculations agree very well 
with the data over a wide range of conditions. The smear due to ran- 
dom and systematic multipole errors in the dipoles, before and aft,er 
the insertion of Ilimped correctors, is calculated for the SSC lattice. 
Finallv the smear due to random and systematic multipole errors in 
the Trvatron dipoles is computed. 

Introcluc&ig_n 

For an ideally linear motion, a particle trajectory in the phase 
space at a certain location along the ring maps out a perfect ellipse 
which is an invariant. In the presence of nonlinearities, however, the 
trajectory fluctuates ahout the ellipse from turn to turn. The rms 
fractional value of this fluctuation is called the single particle smear. 

In a collider ring the region around the axis of the magnets where 
the particle motion is sufficiently linear defines the linear aperture of 
the accelerator. Based on past accelerator experience [I]. the linear 
aperture for the SSC has been defined [2] quantitatively as the rc- 
gion within which the smear is less than 6.4% and the “n-momentum 
tuneshift with amplitude is less than .005. These criteria were sub- 
jected to experimental verification during the beam dynamics experi- 
ment I<778 [!I] performed in the Fermilab Tevatron. Furthermore single 
and mlrltipartirle tracking calculations were used to predict the smear 
for various accelerator conditions. These predictions were compared 
to the experimental results. The agreement is very good. However, 
it is usrful to derive an analytic expression for the smear. First, such 
a calculation ran be compared to experimental and tracking results. 
Agreement among the three methods would enhance one’s confidence 
in thr understanding of the particle motion in the linear aperture re- 
gion. Second, one could use this formula for the computation of the 
smear in a machine, without resorting to extensive t,racking. 

This paper presents analytical form&e for the smear computation 
due to both field errors and correction multipole insertions. First order 
perturbation theory has been used to calculate the distortion of the 
beam shapes in the two transverse planes due to the nonlinearitirs, 
thus giving rise to the expressions for the smear. In the particular 
case of octupoles and srxtupoles the smear is expressed conveniently in 
terms of Collins’ distortion functions [4i, the contribution from the two 
multipoles being separable. As we shall see, this is not the case if one 
includes higher multipoles. A number of applications of these formula 
are presented al the end. Analytic derivation has been performed by 
Forest, !S] in the complicated Lie algebra notation. Our f”rmul,z are 
simple. 

Smear Due to Normal Sextupoles 
First we perform the one degree of freedom analysis. Consider the 

situation of only scxtupoles in the ring. For first order perturbation, 

‘Oprratrd by thr I[nivmcitirs Rrs~a~rlt A ssoriallon under rcmtrart with Lhr 
u. s. Dzprtrmnt UC Enrrgy. 

the distortion of the horizontal particle amplitude A, at phase advance 
+= is given bv [3,6] 

6d,(1/,,) y &{[.4l(&)sin~. B~($,)ros~,] 

t [AS(&) sirl& ~ h(tir) ros3+%1) f (1) 

where qz is the instantaneous brtatron phase such that I dz ~0s vz, 
& is the phase advance and B,, Rx, are the Collins’ distortion func- 
tions: 

RS(37J7,) = (2) 

and the A’s are the derivatives of the B’s with respect to their argu- 
ment. Also SC) is the strength of the k-th sextupole defined in Eq. (7) 
below. The summations above are over each sextupole located at the 
‘modified’ phase advance vLk, which is equal to the usual Floquct phase 

Vhk if V&k > &? and to +& t 2?rV, if&k < $,. 
The single particle smear at gits is defined as 

where ( ) denotes the average over many turns, or, equivalently over the 
instantaneous betatron phase rp,. From Eq. (l), we get immediately 

s;(k) = ; -4 {A%/4 t B,;(k) t Af(&) + Bt(ti,)} (4) 

If we consider the distortion functions as vectors Ry) 2 (Ill, Al) and 

Ry) - (Hn, AZ) th en the smear can he expressed as 

.S$(&) = ; dz { ~R$2’/z + /Rr)12} . 
11. 

From the drfnition of the distortion functions, Eq. (2): we get 

(2) 23@Lk 

:Ry)(&)l : 
cksk e 

7 (6) 81 sin 3flv, 

Further insight can be obtained from the following property of the 
distortion functions: the distortion functions at another point $ + J!L~ 
downstream,are given by the vectors R(,2’ and Rp) rotated through 
angles .LzJ and 3AJj respectively if there is no sextupole between the 
two points. In passing through a thin sextupole of length I, + 0 and 
strength 

S!Z) f,‘?b [ ($2gj] , 

wilh horizontal hetatron function 8, and particle’s magnetic rigidity 
(Rp), the BP’s are continuous while the A,‘s jump by an amount S(‘)/4. 
Thus the smear will he a constant between two sextupoles but will have 
a jump when a sextupole is crossed. This is demonstrated in Fig. (1) 
which is obtained by plotting the smear as given hy Eq. (5) as a function 
of the phase advance around the machine. Sixteen sextupoles clustered 
in two groups of eight located at phase advances of approximately 
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Smear Due to Normal OctuDoles 

5kyf;Ts, , , , , , , , , j 
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Figure 1: Smear versus phase advance, around the machine, as pre- 
dicted from perturbation calculation. 

4.5 x ZA and 14.5 x 2?r cause these jumps in the smear. In the special 

situation of having only one sextupole in the ring, the smear becomes 

a constant of motion. 
h’ext we treat the two degree of freedom case. In two degrees of 

freedom the distortions of the horizontal and vertical amplitudes AZ, 

J& at phase advance Gz, to first order in the sextupole strength, are 
given by [3] 

dd, = AZ/( A, sin 9= ~ Br cos 9=) t (As sin 39.: ~ B3 cos 39*)] 

-d;[2(Asin9,-Bc”scp,)+(A.sin9+-B,cos9+) 

- (,4dSh9- - B~C”S9-)], (8) 

w - 2A,~[(A,sinrpI. -B,cOS9+)t(&Sin9- -.. 8,jcos9-)]. 

Pi 
The distort.ion functions B,, Bd, and B, are given by 

&d(h) = 

(10) 

and the ii’s are given by the derivatives of the B’s Here r+!~* = 2rJ~,i$~ 

and vi - 2~5, + v,. The sextupole strength s(‘) is defined by 

(ill 

In two degrees of freedom one can define three different kinds of 

smear: 

where the subscript P stands for X and Y. Using Eqs (8) and (9) 

one can express the three smears in terms of the Collins’ distortion 
functions as follows 

s,;, ~. ;d:(.4: t B; t A; i 8;) t ; $;(A: t B,2) t (A: + B:) 
I 

t 4(X2 t B’)] ~ %d;(ArA t B,B), (13) 

SC, = 2/l;(.4; + B,2 t Ai + B;) (14) 

S;, = d:(A; t B; - A; - Bj). (15) 

For the explicit expressions of the smear in terms of the sextupole 
strengths and phases, see Ref. 171. 

The one degree of freedom calculation is performed first. The distor- 

tion of the horizontal amplitude A, due to normal octupoles is given 

to first order in the octupole strength, by 

6d, = dz[(At sin49*- B1 ~0~49,) +2(Assin 29, - BZ c”s29,)] (16) 

where 9z is the instantaneous betatron phase, and Al, B,, AZ, Bz are 
the Collins’ distortion functions. The B’s are defined by 

B1(4$.) = & c s$ cos 4(& - 111, - w), 
z k 

The octupole strength Sf3) is defined by 

Hence the horizontal smear given by Eq. (3) is 

or 

S; = ;d:{(A: + B;) t 4(A; t B;)} 

5’; = ; df {]Ry)/2 i 4/B(;)lZj 

where, 

IRy)l = 
Ck &ei44:k 

, IRr)I = 
Ck @)ei2*‘:k 

16 sin4xv,] 161 sin2xv,~ ’ 

(17) 

(18) 

(19) 

(20) 

(21) 

In two degrees of freedom the distortions of the horizontal and ver- 

tical amplitudes, A, and &, respectively, are given by 

6d, = d%[(Ar sin49,- B1 cos49,) + 2(Azsin29,- Bz c0s29~)] 

- 3d,d:[2(As sin 29= - Bs cos 29=) 

t(A3 sin29+- B3cos 29+) t (Aqsin29- -B4 cos29-)], (22) 

64 = -3d$dt,[2(Ae, sin2ioy- Bs cos 29by) 

+(A3 sin 29, - B3 cos 2 pi) - ( A4 sin 29- - B, cos 29-)] 

+di[2(As sin 29, --- Bs ~0~29~) t (Ar sin49p,-Br cos 49,)].(23) 

The distortion functions Bs, Bq, Bs, Bs, Br, and Bs are given by 

%4W4 = &G $- $ cos 2(&k - $% - *+), 

F ‘!-I ‘OS 2(d(z,y)k - $‘r,g - “b,,), 

W41,) = _-I_ , y T T) cos 4(tibk - t/Q - WV), 

wwty) = &, I/ T T cos 2(QLk - & - WV), (24) 

Here VL = V, f vy and $+ = t/v, 5 r&. The octupole strengths SC31 and 
$3) are defined by 

Then the three different smears given by (12) are 

Six = f d$[(At t Bf) t 4(A: t I?;)] + ;d;[4(A; f B;) 

+ (A: + B,1) t (A: t Bj)] - 12d:d;jAzAs f BsBs], (26) 

SZ yy = ;d:[4(A; t B;) + (A; t B;) t (A: t B:)] 

t ; d;[4(A; t B,2) t (A: t B:)] - lZd:&[AsAs + BsBs] (27) 

and 

S;, = ;,:,;[(A; t B,2) -- (A; -i Bi):. (28) 
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Horizontal Smear Due to All Multipoles .~..._____~ 

In this section, we shall present a formula for the horizontal smear 

with the contributions from all higher multipoles without resorting to 

the use of distortion functions. The complete derivation can be found 

in Ref. 171. 
The irrotational magnetic flux density can be written in general as 

n, + in, = Bo F(b,, t ia,)(z + iy)" , (29) 

where 6, and a, are the normal and skew multipole coefficients, re- 

spectively, of order 2(n + 1). For example, 

(30) 

In the above, the vertical bending magnetic flux density Be as well as 

the field gradients of the focussing F and D quads have been excluded. 
Thus, Eq. (29) contains the contributions of all field errors as well 

as other inserted correction multipoles only. Since we are concerned 
with the isolated horizontal phase space only. Eq. (29) simplifies to 

8, ~ Ho C,” , b,,z” . 

Then the smear S due to all higher multipoles, is given by 

Here A is the normalized amplitude, A = (21fi0)‘/z. Taking the thin 
lens approximation we define the strength of the Ic-th multipole, Sk, of 
length I, -+ 0 as 

$1 = ji [$$ (~)~‘+“‘2~oL]k 

where 1 2m l/2m for the 4m/4m t 2.th multipole. The roeffirients 

fjzmml) and f$‘“‘) are defined by 

fiZ”’ ‘1 ~ && ;yp , fp) ~ &g&j ;;-+; (33) ( ) i ) 
fur the tnr-th and (4m, + 2).th multipole respectively. 

Applications --____~ 

The first application is on E778. Experiment F,778 studied the non- 
linear dynamics of transverse particle oscillations. Nonlinearities were 

introduced in the Tevatron by 16 special sextupoles. The smear was 
measured for different sextupole excitations (0 to 50 amperes), differ- 

ent tunes (19.38 to 19.42), and 3 kick amplitudes (5, 8 and 10 kV). 
Tracking calculations were done to simulate the experimental cond- 

tions and the smear was extracted from these calculations. We used 
Eq. (5) to compute the smear for the E778 Tevatron lattice for various 

conditions. The agreement between observation and prediction from 
pert.urbation theory is very good, as Fig. (2a) demonstrates. Also 
Fig. (2b) displays the comparison between perturbative calculations 

and tracking predictions. The agreement is also very good. 
,\s a second application we shall calculate the smear in the Tevatron 

due to random and systematic errors in the dipoles. The Tevatron 
dipoles contain higher order multipole harmonics. The mean value of 

each multipole component is called the systematic error while the rms 
value constitutes the random error. W’e used Eq. (31) to calculat,e the 

smear and the errors are taken from Ref. [lo]. For Rt, 4.4 Tesla, 
at /3” = 100 m with dipole length L = 6.12 m, at an amplitude of 
A 5 mm and tune of v 19.23, the smear in the Trvatron due to 
random errors is S = 1.04%. This result is in very good agreement with 
the measurement,s of the smear in the ‘bare Tevatron’ (nonlinearities 

Qx = 42 

Sextupole current in Amps Sexlupole current rn Amps 

Figure 2: Smear vs sextupole excitation. Comparison between pertur- 

bative calculations (solid line) and ( a ex erimental data (E778), (b) ) p 
tracking calculations. The 3 curves correspond to 2.25, 3.6 and 4.5 mm 

in amplitude. 

Random b2, bs, b4 present. 

Svstematic bz, bar b4 present. -.. ...~----___ 

Table 1: Summary of the results of the analytic computation of the 
smear in the SSC, with and without correction elements. 

turned off) performed as part of E778. For the same conditions, the 
smear in the Tevatron due to systematic errors, as calculated from 

IQ. (31), is S = 0.80%. 
Finally we calculated the smear in the SSC due to random and sys- 

tematic b2, bs and b4 given in Ref. [7]. We assumed an ‘arcs only’ SSC 

lattice with 320 cells and 12 dipoles per cell. The tune was 81.285 

and the amplitude was 5 mm. Then we inserted correctors according 

to Neuffer’s three lumped correction scheme [a] and recalculated the 

smear. The results are summarized in Table 1. The value of the smear 
flurt,uates by large amount depending on the seed used. As a tolerance 
in design, one should allow t.he smear to vary by as much as say two 
deviations from the mean within the good field region. 
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