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Introduction 

In a recent paper2, the longitudinal impedance for 
a narrow pill-box with beam pipes was investigated 
analytically and numerically, in order to understand 
the structure of the impedance as a function of 
frequency in the region above the cutoff of the beam 
pipe. The field matching procedure described by Henke3 
was used in the limit of a narrow pill-box and the 
impedance was expressed as sum which required a cutoff 
for convergence. In the present paper we start with 
the in;e5gral equation for the field at the pipe 
radius ' and solve this equation rigorously in the 
case of a small obstacle of general shape. In this way 
we obtain a more accurate2representation of the 
important broad resonance which dominates the behavior 
in the frequency range above the cutoff of the beam 
pipe. 

Analysis 

The starting point for the analysis is the 
integral equation obtained for t;e electric field in 
the obstacle at the pipe radius. Specifically, we 
have 
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Here kc/2n is the frequency, a is the pipe radius, Z. = 

120~ ohms is the impedance of free space, and the 
azimuthally syfrmetric cavity, of general shape in the 
r,z plane, extends axially from z = 0, to z = g at the 
pipe radius r = a. Apart from a constant, F(z) is the 
axial electric field for r = a and 0 < z < g. The 
component of the kernel from the pipe field is 
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s=l 5 

Kc(z,z') = 4n2 1 
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e 

where the orthonormal (azimuthally symmetric) modes of 
the cavity (with an imaginary metal wall at IT = a) are 
defined by 

Oxi+= kei$ , VXrf 
e = ke $ , (2.6) 

and where h (z) 2 
e [ 1 h[(a, z) is the azizzuthal component 

cp 
of the normalized magnetic field at r = a. 

Small Obstacle Solutions 

The "cavity kernel" in Eq. (2.5) requires a sum 
over the modes in the cavity. For a small cavity, this 
sum is dominated by the lowest mode for which the 
solution for the magnetic field is the constant field 

ho(z) = - I 
dzGr2 

(3.1) 

normalized so that 
I 

h:(z) dv = 1 over the annular 

cavity of length 2na and cross sectional area A. The 

frequency of this mode corresponds to k = 0, so that 
0 

2R 
Kc(z',z) I - . 

k2aA 
(3.2) 

The "pipe kernel" in Eq. (2.3) is more difficult 
to evaluate for a Small obstacle, since the sum in Eq. 
(2.3) does not converge if IuI = Iz' - zI is set equal 

to zero. To proceed we add and subtract Kp(g), which 

is independent of z' and z, to obtain 

2nj m e 
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bS 

(3.3) 
where 

Since lul/a and g/a are very small, the major 

bs=fl, 8,=p . 
contributions to the sum in Eq (3.3) occur for large 

(2.4) s, in which case we obtain 

Here j 
S 

is the sth zero of the Bessel function Jo(x) -jbslul/a -jbsg/a -B/u/la -&/a) 
and b is to be replaced by -jg, when js > ka. The - e 

s EL.- 
- e 

component of the kernel from the "cavity fields" is bS B 
s=l 
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+” , 
IUI (3.4) 

The integral equation for F(z') in Eq. (2.1) therefore 
becomes 

I 
1 

II 
2j 

dx’ f(x’) X--p(x’-XI 
I =1 I (3.5) 

0 

where 

x’ = z’/g , x = z/g , ngF(z’) = af(x') (3.6) 

and 

2i we 
-jbsg/a 
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bs . * (3.7) 
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The solution of Eq. (3.5) can be expressed in 
terms of the solution of 

I 
1 

dx' L(X') &IX - XI = 1 , O<x<l . (3.8) 
0 

Specifically we find 

Lb’) 
f(X') = K/J - 2jR ' (3.9) 

where Real Part of Admittance as a Function of Frequency 

-1 
[J 1 

-1 
J= dx L(x) . (3.10) 

0 

We then obtain the admittance from Eq. (2.2) as 

i! oY(k) 

-jbsg/a 
2en2 

geb +jT 1 , (3.11) 

s=l s 

where we have used the solution of Eq. (3.8) in the 
form6 

x 
-l/2(1 _ /l/2 

L(X) = - 2n en2 , J = -2.h2 _ (3.12) 

Numerical Results and Discussion ___- 

we have used Eq. (3.11) to calculate the real and 
imaginary parts of the admittance, shown as the solid 
lines in Figs. l(a) and l(b) for a small pillbox with 
b/a = 1.1 and g/a = .05. The dots correspond to the 
results of the computer program developed to calculate 
the longitudinal impedance of an azimutQally symmetric 
cavity of general shape in a beam pipe. The agreement 
between the two confirms the validity of Eq. (3.11). 

Furthermore, the "sawtooth" structure of that part of 
the admittance involving the zeroes of Jo(x) depends 

primarily on the parameter ka (and only logarithmically 
on kg) while the primary dependence on the pillbox size 
(b,g) is contained only in the smooth part of the 
susc ptance, 1 which is most important for small values 
of kh. 

If one smooths the "sawtooth" structure, 
equivalent to averaging over k for values of ka above 

the cutoff of the beam pipe, one finds the features of 
the brqad resonance discussed in depth in an earlier 
paper. 
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Figure l(b) 
Imaginary Part of Admittance as a Function of Frequency 
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Appendix A - 

In order to demonstrate that 

-l/2 -l/2 
x (1 - x1 

L(X) = - 2~ en 2 (A.1) 

is a solution of Eq. (3.8), we make the substitutions 

References 

1 + cos 0' 1 + cos 0 
x‘ = 

2 , X= 2 ' (A.2) 

from which we obtain 

QE 1 I 
dx’ 

en Ix' - xl 
0 vG'(l - x') 

cos 0 - cos 0' 
do' !n 2 1 . 

(A.3) 

Use of the exponential forms for cos 0, cos 0' leads to 

Q = ; me rn &’ [e, eiO + [n(l - e-i(0’+0)) 

+.!nc1-e it@'-@) )-en4 1 
71 = -nt?nz+ I d+&?n(l - cos $@ , (A.4) 
0 

where @ = B' i: 0, and where the last form of Q is 
clearly independent of 0, as required by Eq. (3.8). 

I 

Q=-n!.n2+5; 

rtm + 2) 

m=l 1 
m l-c,, m! 

(A.51 

The sum over m in Eq. (A.5) can be shown to be 
equivalent to the sum obtained from the power series 
expansion of the integrand in 

111 

s 

du 
Q= -n.!n 2 +z (1-G) , 

0Udi-Z 

which is readily evaluated as . 

1 
Q=-n&,2+n&,(l+fi, =-2nh2 

0 

Thus 

s 

1 Q 
L(X') en Ix' - XI dx' = - ____ = 1 

2% tn 2 ' 
0 

as required in Eq. (3.81, and 

J= =-Zen2 , 

as stated in Eq. (3.12). 

(A. 6) 

(A.7) 

(A.8) 

(A.9) 

A power series expansion of the integrand in Eq. 
(A.3) leads to 
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