
COMPUTER SIMULAI’ION OF FEL SIDEBANDS IN A STRONGLY DISPERSIVE WAVEGUIDE 

EJ. Sternbach* 
Lawerence Berkeley Labomay 

1 Cyclotron Rd. 
Berkeley, CA 94720 

With the development of high power FEL’s, it is necessary to 
consider the development of sidebands ln the radiation spectrum. 
These sidebands can considerably widen the bandwidth of the FBL 
output and if sufficient power is developed, this can lead to the 
detrapping of electrons. It has been noted previously that the effects of 
wavegulde dispemlon can affect the sideband gain and lccatlon[ l] [ 21. 
In this report the author describes a set of coupled equations suitable 
for the study of the radiation spectrum of an FEL. These equations 
include all the effects of waveguide dispersion. A computer simulation 
that numerically integrates these equations is used to study sideband 
growth and saturation ln the regime of strong dispersion. 

Iutroductiou 

Many instanoes of high power FEL’s have been demo&rated in 
recent years. In the regime where powers are high and electron 
bunching is strong, the development of sidebands to the fundamental 
FEL frequency is likely. These sidebands broaden the radiation 
spectrum and under certain conditions can cause detrapping of the 
electrons from the FEL bucket. It has been noted previously that in a 
waveguide FIX, the dispemion caused by the waveguide will have a 
significant effect on the sideband physics. Of particular interest is the 
regime where the group velocity of the radiation becomes equal to the 
parallel velocity of the electrons[ 11. These conditions cannot be 
properly described by the usual FEL equations since the major 
assumption, that of slowly varying amplitude and phase, breaks 
down. In this paper, a formalism previously developed to deal with 
waveguide FEL’s is briefly described. A computer simulation based 
on this formalism is used to illustrate some aspects of general 
sideband physics, particularly the regime of strong dlspemlon. 

Basic l2qmtbm 

Inthissectiontheequationsusedinthecomputer~~~are 
described. The derivation of these equations are described in great 
detail elsewhere[ 3][4]. 

If we assume that the radiation field consists of a finite number 
ofdisuetefrequendes,thenwecxn deriveapairoffirstorderllnear 
differential equations for each frequency. It is assumed that only 
forward traveling radiation is important and that nonlocal effects ate 
negligible. The equations that result am 

%g=yys~epj , 

9!GxMSepj , dz e 
COSmXd”m with p=$$4vbj 
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Here a, and & are respectively the amplitude and slowly varying 
phase of the radiation. The superscripts mn refer to the transverse 
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waveguide mode and the subscript j refers to the particular frequency 
being followed. The quantity 0p represents the ditTerence in phase 
between the peak of the current component at that frequency and the 
bottom of the pondermotive well defined by radiation at that 
frequency. The quantity 7jm* depends on the FEL geometry and is 
given here for a linear wlggler in a rectangular wavegulde. The terms 
a and b represent respectively the x and y dimensions of the 
wavegulde. The term h, is the Fourier amplitude of a quantity that 
goes like the number line density of electrons divided by y, the 
relativistic energy factor. The term a, is the wiggler vector potential 
normalized by e/mec2. 

The evolution of the current, and therefore the factors 9,, and 
~,canbeobtainedbyfollowingthe~~ofintfividualparticles.In 
termsofyandt,the~dem~inalineatwigglerisglvenby 

and !!I- 
dz f VX t a~@3 , 

m.n 
WI 

where a, is the normalized vector potential of the radiation field. Each 
term in the sum of (3b) will move at a different speed in a waveguide. 
Since the vector potential of the wiggler field is much larger than that 
of the tad&ion field it k a quite good approximation to assume that v, 
and v, do not depend on the magnitude of the radiation field. Thus 
they= 

v,= awe 
Y ’ 

v, = c q l-7. i 
1+&z) 

(5) 
V YL 

The &lUDllter simnlation 

The computer simulations described in this paper were 
performed on a CRAY 2 supercomputer. Eqns. (1) and (3) were 
integrated using a version of the GEAR integration package. Since 
following an entire electron pulse would require too much memory, a 
length of the electron beam is followed with periodic boundary 
conditions. The radiation equations follow a particular Fourier 
component so the longer this length is, the more resolution one can 
achieve in the simulation. For the simulations done here the length of 
beam ln the simulation was 32 times the bucket length of the 
fundamental frequency. This gives 3.1% resolution in the radiation 
iljMnlmcalallations. 

The sidebands in these simulations are assumed to start from 
noise. This noise is assumed to have a flat power spectrum and the 
total noise power is an input parameter The simulations in this paper 
have an input noise power of 5 watts. 

The sideband instability is seen only when the FEL approaches 
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Tab&t I. Sin~~htion pamndem 
Relativistic energyy 7.1 
Wiggler peak field 3.80 #3 
Wiggler wavelength 0.8 an 
Radiation frequency 34.8 Gtlz 
Beam current a00 MOPS 

Waveguide size 9.8 x 2.9 an 
Equilibrium radiation power(TEOl) 200 Mw 

saturation and the electron beam is tightly bunched. Thus for this 
section we will use a simulation where there is one macropartlcle per 
bucket to study sideband gain. This is good model as long as 
sideband power is small compared to the power ln the fundamental. 
This will allow us to understand some aspects of sideband physics 
without being confused by complexities due to the electron 
dlstributkm. 

The simulations of this section use the parameters of Table I. 
These are similar to the parameters of the ELF experiment at 
Livermore. The plots ln Fig. 1 were started from an equilibrium 
where the particle was started ln the center of the bucket. Thus the 
equilibrlum exhibits no synchrotron oscillations.‘Normally both the 
upper and lower sidebands grow. Contrary to expectations from the 
simple theory to date, the ~YWX sideband has slgniflcantly higher gain 
than the upper sideband. When only the lower sideband is all~ed to 
grow, it exhibits a spectrum nearly the same as the simulation with the 
full spectrum. However, lf only the upper sideband is allowed to 
g r 0 w, there is no amplification at frequencies higher than the 
fimdmlental. 

The observed features can be explained lf one considers the 
creation of FEL sidebands as stimulated scattering. The lower 
sideband is the Stokes wave and the upper sideband is the anti-Stokes 
wave. The scattering medium is the tightly bunched electrons which 

(a) 

frequency xloiO 
FOR 1 Spectrum at 3 meters. 
(II) Full radii spectim. (b) Only Icwer sideband is allawed to grow. 
Not shown is a case where only the upper sideband was allowed to grow. 
No amplification of the upper sideband was Seen at all in that case 

naturally oscillate at the synchrotron frequency. If one starts with an 
equilibrium where there k initially no synchroWm mcillation, then the 
uppersidebandcannat~ina~owaveprocess~itmustgmw 
at the expense of the synchrotron oscillation. Flg. 2 illustrates that if 
one starts fmm an equllibrlum with a large synchrotron oscillation, 
and if only the upper sideband is allowed to grow, then one does 
observe amplification at the upper sideband frequency and the 
synchrotron cscillation decays ln amplitude. 
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Figum 2 When only the upper sideband is allowed in the 

simulation, it must grow at the expense of the synchrotron oscillation. 

Effect of Dispersion on Location and Gain of Sidebands 

In this section we examine some one particle per bucket 
slmulatlons of FEL sidebands for different levels of dispersion. The 
parameters used are basically that of Table I except that for different 
waveguide sizes the wlggler field needed for resonance k changed. 
For each of these simulations, only a ~~01 mode ls followed. The 
dkpersion then depends only on b, the y dimension of the waveguide. 
The x dimemion, a, in these simulations are adjusted to give the same 
cmes sectional area forthewavegulde ln each simulation. 

Fig. la and Figs. 3a through 3c represent simulations ln 
successively narrower waveguides. Thls represents increasing the 
amount of dispersion. The final plot in Fii. 3c represents a case 
where the group velocity of the fundamental frequency in the 
waveguide is equal to the parallel velocity of the electrons. This *no- 
slip”conditioncanbewrlttenmostalmplyas 

(YFY ‘kvk? 1 (6) 
where for each waveguide mode 

tl.12 = (y;“)2 + e I (7) 

Here k, is the wiggler wave number and k, is the radiation wave 
n u m b e r. Since k, depends on w through y,, the three dependent 
quantities are the radiation frequency, the wiggler wavelength, and the 
waveguide size. 

The effect of dispersion on sidebands can be summarized as 
follows. Dispemion causes the sidebands to occur at a greater d&tame 
from the fundamental frequency. Even for the simulation in Fig. la 
where dispersion is relatively small, this is a significant effect. An 
analysis ignoring dispersion would predict a separation of the 
sideband from the fundamental for Fig. la to be about 3.5 GHz. It 
can be seen that the actual separation is closer to 7GHz. This 
separation can be seen to increase for smaller waveguide heights in 
Fig. 3. Also the gain can be seen to decrease for smaller waveguide 
heights. When the *no-slip” condition is satisfied as in Fig. 3c, the 
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sideband gain can be seen to be suppressed entirely. For a sideband 
frequency to grow it must modulate the current over a region of many 
FEL buckets. If the radiation group velocity and the electron parallel 
velocity are identical, then no information can tmvel along the electron 
beam and therefom sidebands canuot grow. 

In this section we examine a full many particle sideband 
simulation where the sideband power is allowed to grow until it is of 
the same order of magnitude as the fundamental frequency. In this 
regime, the one particle per bucket simulation is no longer relevant 
TheparametersusedareoncemorethoseofTableIwiththeex~tion 
that the FE!L is started from an input signal of 60kW and the peak 
wigglerfiekiis3.59~~DsEarttheatthepeakofthegaincurve. 

The radiation specumn in fig. 4 is taken at 6 meters where there 
is sufficient sideband power for the system to be highly nonhnear. 
Four upper sideband peaks are clearly visible. The fust lower 
sideband peak is clear and is nearly as high as the fundamental. Other 
sideband peaks exist below this, but as waveguide dispersion 
becomes more prominent the spectrum becomes more complicated. As 
the buckets for the lower sidebands become large enough for these 
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F@re 4 Radiation spectrum at 6 meters for full FEL simulation. 
Dotted line repreeenb the results of a one particle per bucket 

simulation and can be wen to be quite fer from the many partide 
simulation in the nonllnwr regime. 
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Figwe 5 Power VI. distance tar full FEL simulation 

frequencies to become self- amplifying, the electrons ‘leak” out of the 
fundamental frequency bucket to interact with the lower sideband 
bucketandthemforearedecelerated.ThuslfanuntaperedFELislong 
enough, power will continue to be produced by electrons c88c8ding 
into lower buckets and this process will continue to widen the FEL 
r3pecmm into lawa frequencies. 

Computer simulations can give many insights into the behavior 
of FEL sidebands. They seem to confirm that the sideband instabillty 
is a process similar to stimulated scattering. Simulations performed in 
highly dispemive waveguides show that dispersion can have a large 
effect on the location and gain of FEL sidebands In the case where 
the electron velocity and the radiation gtoup velocity become equal, 
the sideband instability is completely suppressed. 
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