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Abstract 

A method is presented for calculating the 
emittance of an electron beam from scans of undulator 
radiation. Scans are affected bv electron beam 
properties, radiation angular distfibution, imaging 
pinhole diffraction, smearing from scanning, and 
differences between scan and beam axes, all of which 
are incorporated. Adding-in-quadrature is also 
discussed. 

1. Introduction - 

The phase-space distribution of the photon beam 
from an undulator can be comuuted bv convolvins the 
angular distribution of the ;adiati& from a &ngle 
electron with the distribution of the electron beam. 
This distribution can be allowed to propagate forward 
in space, optionally filtered and diffracted by a 
pinhole, and scanned to create an image. For very low 
emittances, it is necessary to carry out these 
convolutions numerically. Only in the approximation 
that the intrinsic angular spread of the photons, the 
diffractive and smearing effects of the pinhole, and 
the smearing effects of the non-zero-aperture scanner 
can all be represented by the convolution of many 
gaussian functions can a purely analytic approach 
yield tractable expressions. This approximation will 
be exhibited in parallel with a more exacting 
approach, and the two methods compared. 
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Far from an N-period undulator (Nml) and for 
frequencies close to a harmonic of the fundamental, 
the intrinsic angular distribution is 141 
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where w is the frequency of the selected by the mono- 
chromator, Q is the frequency of the first harmonic, 
h is the harmonic number, X=Zn/k the radiation 

wavelength, L the undulator length, and e21rxf2+y . ‘2 

Under some circumstances (see section 8) the 
intrinsic radiation angular distribution is2approx- 
imately gaussian in 8, with a sigma of a' 

Y = V(2L). 
In this case, J, 

vi is approximately the product of two 

guassians in xvi' and yYi' with sigma (J'~, and (2.3) 
becomes: 

The topic is covered more exhaustively in 
reference 1. An application is given for the 
low-emittance lattice of the storage ring PEP [2]. 
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2. Electron and Photon Phase-Space Distributions -~ -- 
(2.4) *qy(qyJJ;) 

- ( ayqi2 = NYe 
+ 2byqyq; + c&/2 

I 

The phase-space distribution for electrons in 
either transverse plane is obtained by convolving the 
mono-enerqetic distribution with the energy 

where 
a Y = ae/(u$y) , by= beA &I , 
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de = 2/2*+ E'(y$ + 2ann' + f3n -) , 
where od is the fractional energy spread, qe is either 
x or y (assumed to be uncoupled), a,& and y are the 
Twiss parameters, and n is the dispersion. 

The "intrinsic" radiation angular distribution, 
due to one electron passing through the undulator, is 
denoted by *,,i(x'vi, yrYi), where qlYi = q', - qVe, 
with q standing for either x or y and qpy being the 
slope of the photon trajectory relative to the 

central orbit of the electrons. 

c =c 2 
Y e - be+ r dy = ae + l/o: . 

Propagation of the photon beam a distance z from 
the source occurs according to q$z) = qy(0) + 
z*q'+O) and q'yW = q',(O). Thus 

~y(xy'x;'YytY;'z 1 = ~yo(xy-z~x~,x~,Yy-z~Y~.Y~) , 

where $ v. is given by either (2.3) or (2.3'). 

3. Image Formation without a Pinhole ~-~ 

Assume that a photon beam propagates a distance T 
to an image plane. The image Ia(x, y, T), called an 
"angular image", is given by 

(3.1) I,(x,y,T) = s 
L'dy' $J~~(x-Tx',x',y-Ty',y') 

The source of G: name "angular image" can be 
seen by finding the sigma of the image along one axis. 
If one uses (2.8) in (3.1), one obtains for each plane 

I assume that q = qe. Strictly, this is not 
true, since the non-lero length of the undulator leads 
to an effectively non-zero intrinsic photon beam size 
(depth-of-field effect). The intrinsic photon beam 
spatial and angular distributions can be characterized 
by gaussian parameters gy and ury given by [3] 

a 
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(2.2) and 
uY = V.&L)4 . 

where L is the undulator length and X is the radiation 
wavelength, assumed to be a harmonic of the fundamen- 
tal. Since even for the PEP low-emittance (E< 6.4 
a-nm-rad at 7.1Gev) lattice, o is much smaller than 
the electron beam size, it is &nored in what follows. 

The phase-space distribution of the photon beam 
at the source is given by 

ca -b 2 

As T*, the an&lir p:operties of the source 
dominate the image. This gives rise to the name 
"angular image" for a situation with no imaging 
pinhole. If the contributions from dispersion and the 
radiation opening angle are small, then the angular 
image depends primarily on E/B. The so-called 
"spatial image" is obtained using a pinhole to image 
the radiation; under the same assumptions, ~(3 is the 
primary determinant of the spatial image sigma, [rs. 
Hence, the emittance is roughly given by es% [5]. 

4. Pinhole Imaging in the Geometric Optics Limit -~ 

Assume that a pinhole of radius A at z=P is used 
to image the beam at some Z=I>P. If diffraction can 
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be ignored (see section 6), it is valid to think of 
the photon beam as an ensemble of non-interfering 
rays. The resultant “geometric spatial” image is 

IqstxtY) 

&x’,y,y’) 
where the region R is defined by 

(x - X'I) 2 + (y - ~'1)~ < A2 , 
and T=I+P. 

Assume that the pinhole can be treated as a slit 
extending, say in y, in order to get an image along a 
line parallel to the x-axis (see section 8), and that 
(2.3') applies. If the variation of qxYo with angle 

is negligible for variations in angle of order A/p, 
then a good approximation to the exact result is 
obtained by convolving the image of a point source due 
to a non-zero-aperture pinhole with the image of the 
actual source due to a point pinhole. If the photon 
beam is gaussian, one can employ adding-in-quadrature. 
Defining bsl =(TA/P)/d3, one finds that for usl<upp, 
adding in quadrature and fitting a gaussian to the 

actual image give sigmas that are within 5%, while for 
~'~1'0~pd3, the results agree to within 1%. 

If the imaging is source-dominated and the 
pinhole can be treated as a slit, the image sigma is 

^ I2 L 
OPP = a - 2b P + c P2 

in the limit th\t PG, this'expression depends 
only on c y, hence the name “spatial image”. 

5. Pinhole Image Formation with Diffraction -~ 

For sufficiently long wavelengths (see section 
6), diffraction effects become important. If the 
phase-space distribution produced by a single electron 
passing through the undulator has little variation 
across the pinhole, one can think in terms of an 
ensemble of nearly-spherical waves (one for each 
electron) impinging on the pinhole. For large 
source-to-pinhole distances, P, this is equivalent to 
an ensemble of point sources in the source plane, with 
the relative intensity of each source being $J,(-x'P, 
X', -y'P, Y'), where J, is the source distribution 
function. 

If the size of the photon beam produced by a 
single electron at the pinhole is much larger than the 
pinhole itself, then one expects to be able to apply 
this method, since the assumption that the phase-space 
distribution varies but little over the pinhole is 
then satisfied. The criterion is approximately that 

P2gy '2 + a y2 >> A2 (cf. (2.2)). 

In the Fresnel approximation, the image formed by 
the pinhole can be computed by convolving the image 
made by a point pinhole with the Fresnel diffraction 
pattern formed by an on-axis point source illuminating 
a non-zero-aperture pinhole. This convolution is an 
implementation of the amplitude weighting scheme 
discussed in the previous paragraph. 

The image calculated via this scheme is 
(5.1) 

Id(x,y) = J:xdE D( X-X,Y-5).IL(-x/M,x/I,-~,~I) 

where D is given-by (6.7) and M = I/P. 

6. Fresnel Diffraction by a Circular Hole -~ -~- 

In this section I give an expression for the 
diffraction pattern due to a spherical wave from a 
near-axis source impinging on a circular hole, as well 
as criteria for judging when one needs to consider 
diffraction. I first define the following functions, 
analagous to the Fresnel integrals 

$iE; } s I,"- @YE} (cla2) Jo(c2fit a) , 

where cl = ~/X.(1/1+1/p) , c2 E 2rr/( XI), and 
At - (Ax ,Ay) is the vector in the image plane from 
the diffraction pattern center to the image point. 

The diffraction pattern is 

N&x, AyY) = [C(At)12 + IS( 
This diffraction pattern does not depend on the 

source point q. Only the position t of the center of 
the pattern depends on g, through the point- 
pinhole-imaging relation t=-Iq/p. Thus, (5.1) is 
valid if the Fresnel approximation is valid. 

The Fresnel approximation is valid if 

((2~ U )2 + A2,2 t (20 
<< 8X and _ p 

s)2+ A2) 

P3 I3 
<< 8X 

where q==*2gu characterizes the spatial extent of the, 
photon beam at the undulator, and t=k2aes 
characterizes the spatial extent of the geometric 
image for a point pinhole (see equation (4.17)). 

Diffraction may be ignored altogether (or else 
treated as a small effect to be added in quadrature) 
when 

(2yJ2+ A2 (20 s)2+ A2 
P << 2x and I << 2x 

Note that when for both conditionals the terms on 
each side of the inequality are of the same 
order-of-magnitude, one obtains Fraunhofer-like 
diffraction patterns. 

7. Effects of Image Scanning -~- 

Assume that images are scanned by a square 
aperture with sides of length 2h. which is scans in 
directions perpendicular to its' sides, which are 
parallel to the axes in the u-v coordinate system, 
which may be tilted by an angle S relative to the 
de-coupled x-y system for the electron beam. 

A scan along the u axis, S(u), of an image 1(x, 
y) is expressed analytically as 

u+h 
S(u) = d, ^ ^ ^ ^ ^ 

i s 
dv 1(x(11, VI, ytu, v)) . 

u-h -h 

There are two effects combined in this equation 
which I will investigate separately, namely, the 
effect of non-zero h and the effect of non-zero 8. 

Setting S=O, and assuming that 1(x, y) is an 
uncoupled bi-gaussian in x and y, one obtains a 
convolution of a gaussian with a square aperture. 
Thus, if uix>h/d3, the sigma of the scanned image is 
accurately given by adding the image sigma uix in 
quadrature with h/43. 

Next, let h+O and allow S to be non-zero. In 
this case, s(u) = rtu-c0se, -u-sine). If 1(x, y) is 
bi-gaussian, the scan is gaussian with sigma 

2 2 2 
"SC = uiy 'ix / (0fyc0s2e + ufxsin2S) 
If Uix"U' 

lY 
or u. mu. 1x 1y’ the sigma of the scanned 

image, user depends strongly on 8, making the system 
potentially sensitive to tilts of the beam x-y 
distribution relative to the scanning axes. Such 
tilts can be due to poor alignment or to coupling of 
the horizontal and vertical betatron motions in the 
storage ring. In storage rings, one typically has a 
vertical emittance that is considerably smaller than 
the horizontal emittance, indicating that precautions 
need to be taken against erroneous conclusions from 
tilted scans, which might make the vertical emittance 
seem much larger than it actually is, without 
appreciably affecting the horizontal emittance. This 
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effect may be mitigated by non-zero pinhole size, 
diffraction, and the non-zero size of the scanning 
aperture, all of which will (in a certain regime) 
broaden the smaller sigma much more than the larger. 

& Calculating Emittance from Scanned Images --~ 

The point of the above is to allow calculation 
of the emittance of the electron beam that generates 
the X-rays. Strictly, only one type of scan (angular 
or spatial) is needed for each plane; however, use of 
both types reduces errors, due, for example, to poor 
knowledge of the lattice functions. 

For large emittances, abstracting the emittance 
from the scans is typically straight-forward, while 
for small emittances it may involve considerable 
numerical computation. The difference is that for a 
large emittance machine, the effects of non-zero 
pinhole size, diffraction, and the non-zero size of 
the scanning aperture can typically be treated by 
adding in quadrature (depending on the parameters of 
the imaging system), while for low emittance machines 
these effects are significant or even dominant, 
particularly for the vertical plane. 

The "high-emittance" or "clean imaging" regime is 
defined by the following set of conditions, gleaned 
from the development above (most of the variables are 
defined above): 

1. For spatial and angular scans, in both planes: 
a. The intrinsic radiation angular distribution 

must be accurately gaussian, or else small 
compared to the electron beam divergence. 

b. h/J3<ai, where ui is the image sigma. 

2. For spatial scans only, in both planes: 
a. AT/(Pd3)< g (unless diffraction dominates). 

b. The angularppdivergence of the beam must be 
much larger than A/I (slit approximation). 

c. The beam size at the pinhole must be much 
larger than A (slit approximation). 

d. The beam size at the pinhole due to a single 
electron must be much large than A (diffraction 
approximation). 

e. The diffraction pattern must be accurately 
gaussian, or small compared to Q 

PP' 
Assuming that all these conditions hold, and 

assuming also for simplicity that there is no relative 
tilt of the scan and beam coordinate systems, the 
sigmas of the angular and spatial scans are calculated 
as, respectively, 

L2 2 2 2 
S 

= h,'3++mph 
+ uPP 

and 
.x2 a = h2/3 + 0; , 

where %h 
is either AT/(Pd3) or some sigma character- - 

izing the diffraction pattern. 

Given the complexity of the dependence of the 
results on E, it is not generally possible to solve 
for E in terms of the angular and spatial sigmas; 
however, the problem can be dealt with numerically by 
minimizing the following function: 

F(E) = (I; *2 - Z~(E))~/'AZ;~ + (r; - Is(c))2/AIs 

where starred quantities--are measured values and the 
AC's are uncertainties in the measured sigmas. Note 
that the functions I: and C also depend upon the 
lattice functions (i.ea, 8, u,' n, and n'), and upon 
the imaging system parameters (i.e., A, P, I, and h). 
These parameters must must be measured independently 
and the uncertainty in their values must be folded 
into the uncertainty in the calculated value of the 
emittance. This is done by minimizing F for, say, 8 
and S+&8 to obtain two values of E, from which one 

computes as/a8 and hence the contribution to the error 
in E due to uncertainty in one's knowledge of 8, in 
this example. 

When one or more of the conditions listed above 

are violated, it becomes necessary to do certain of 
the convolutions numerically. This is the situation 
in the "low-emittance" or "poor imaging" case. In 
this regime, the procedure for calculating E is 
similar but requires more computation. The function F 
is again minimized, but Ca and Cf must be computed 

.J 

from fits to intensity profiles computed by 
numerically convolving the many effects described 
above, or by direct fits of computed images to the 
actual image scans. 

9 Application to the Storage Ring PEP 1 -- 

Both exacting and approximate analysis was done 
for two sets of data taken on the PEP-1B beamline, 
with PEP at 7.1Gev[6]. The table below summarizes 
the results and compares them with theory (from 
lattice codes). The exacting method shows both 
better accuracy and sensitivity to changes. E: is 
the total emittance, and K=& 8 

J x’ 

Calculated from Expt. 
Theory Approximate Exacting 

Lattice: 

?$?%%d, 6.4 4.5 5.3 +o.a 
K 0 0.02 0.04kO.2 

Fkz2-5, 3.1 4.3 3.8 20.5 
K 0 0.04 0.015~0.008 
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