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Abstract
A few of the problems in the design of an ultra-low emittance damping
ring were considered. Once the goals of low emittance and fast damping
times are acheived in the linear lattice design, there remain the serious
problem of the nonlinear beam dynamics. Low emittance lattices usually
have small dynamic aperture due to the particularly strong sextupoles ne-
cessitated by the small average disperion function. The dynamic aperture
solution is to abandon the conventional interleaved sextupole scheme and to
place sextupoles in pairs 180 degrees apart in betatron phase with ne other
sextupoles in between. The deleterious effect of the sextupole thickness can

be partially corrected by octupolar fields.

Linear Lattice
The ring is made of twelve arc sections and twelve straight sections for
wigglers.

Arcs
The large bending radius and short FODO cells in the arcs fulfill the re-

quirement that they produce little quantum excitation in the beam. At the
same time, a large circumference will allow the damping of many bunches
at a time, thus decreasing the effective damping time.

The optimization of the phase advance per cell depends on whether the
dynamic aperture or the emittance contribution of the arcs is to be com-
promised. For the best possible dynamic aperture, the sextupoles, which
are needed to correct the chromaticity, are inserted in the lattice in pairs
minus unit matrix apart in both planes (see section on sextupole arrange-
ments). In this arrangement, the thin-lens sextupoles ate invisible to the
lattice (no aberrations to any order), but the choice of phase advance per
cell is restricted to 180(2n+1)/m degrees where n,m are integers {1]. This
is a strong restriction, as the compensation disappears quickly when the
value of the phase advance departs from the optimal value. In any case,
the most space efficient phase advance per cell is 90 degrees in both planes
where a sextupole can be inserted every two cells (m=2).

If the compensation of the sextupoles geometrical aberrations is sec-
ondary in importance to the emittance, the optimal phase advance per cell
is around 145 degrees for the horizontal plane. There is no restriction on
the value of phase advance in the vertical plane. At this stage one can
reduce the effect of the sextupoles’ geometric aberrations by inserting one
near each appropriate quadrupele becanse the strengths of the individual
sextupoles are minimized. In practice, the high chromaticity per cell which
makes the sextupole strengths large induces one to choose a cell with a
smaller horizontal phase advance and chromaticity. The emittance does
not vary much in the neighbourhood below the optimal value of phase ad-
vance per cell.

An emittance of about 3x107'% m-rad at 4 GeV for the FODO cell was
obtained with a cell length of 7.2 m. An extra factor of fifteen in emittance
reduction is obtained by the strong damping of the wigglers.
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Figure 1: Machine functions for one half of a superperiod. The wiggler is
represented as a series of small boxes on the right hand side.

Table 1: Main parameters of ring

Energy (GeV) 4
Circumference (m) 2229.
Emittance at 4 GeV {m-rad) 2.5x10~ 1
Horizontal damping time at 4 GeV {msec) 13.5
Horizontal and vertical tunes 61.74/62.84
Number of superperiods 12
Energy loss per turn at 4GeV (MeV) 4.4
Energy spread at 4GeV (%) 09
Momentum compaction factor 00029
Table 2: Arc parameters.
Number of FODO cells 192
Length of each cell {m) 7.2
Number of bending magnets 432
Length of bending magnet (m) 2.5
Bending radius (m) 152.8
Bending field (kG) 0.87
Total number of quadrupoles in arc 420
Total number of matching quadrupoles 72
Length of arc quadrupole (m) 0.3
Strength of arc quadrupole (m~?) +1.34
Field gradient in arc quadrupole (kG/cm) +1.78
Number of focusing sextupoles (SF) 96
Number of defocusing sextupoles (SD) 192
Length of sextupole (m) .3
Integrated strength of sext. (SF/SD)(m~%) -8.2/8.0
Second derivative of field in sext (kG/cm?)  +1.36

Wigglers

The high fields of the wigglers (the hybrid Samarium-Cobalt type is
assumed) provide almost all of the damping in the ring. Because the wiggler
generates its own dispersion function, the wiggler period must be short to
ensure a small enough quantum excitation, though it may greater than that
of the arcs.

The wiggler field is modeled as a sine function with the maximum on-
axis field related to the gap between the poles and the period length. The
vertical focusing of each wiggler pole is taken into account in the machine
function matching.

The emittance written in the following way and exhibits the wiggler and

the arcs contributions (see ref. [2]):

(e 3d")aru + (fﬁp_sda)wigglefl

(fr-2ds),,., + (fp‘itis)w{,gl,,. W

e[m — rad] = 3.84x107 13,2

where the quantum excitation term 7 is the one found in reference {3] by
Sands and the p's are the bending radii.

From table 4, the wiggler damping term is thirty times that of the arcs,
while the quantum excitation terms are about equal.

The alternative to using wigglers for damping is to use high field bending
magnets in the arcs which forces the magnet to be short enough to prevent
the dispersion from growing. The result is many extremely short cells and a
smaller circumference, basically determined by the maximum magnetic field
acheivable by iron. Eventually one runs out of room for the quadrupoles
which must become stronger at the same time to keep up with the phase
advance per cell.

Table 3: Wiggler parameters.

Total length 360. m
Number 12
Maximum field for 4 GeV operation 10.7 kG
Minimum bending radius 125 m
Wiggler period 120.0 mm
Full gap width 25.6 mm
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Table 4: Emittance-related quantities in equ. {1).

arc quantum excitation term (m~?) 5.6x10~7
arc damping term (m?) 3.8x10-2
wiggler quantum excitation term (m~?) 7.4x10~7
wiggler damping term (m~?) 1.2x10°

emittance w/o wigglers at 4GeV (m-rad) 3.4x10~10
emittance w/ wigglers at 4GeV (m-rad)  2.5x107!!
emittance w/o arc at 4GeV (m-rad) 1.5x10-1t

Sextupole Configurations and Dynamic Aperture

Tracking

The stability of the tranverse particle motion in the damping ring is
simulated by numerically tracking the trajectory through many turns of
the ring. A particle’s motion is considered unstable when its amplitude
reaches une meter within five hundred turns. Though this number of turns
represents only one third of a damping time constant, the dynamic aper-
tures for the different situations can be compared on an equal footing. The
tracking program used was PATPET[4], a combination tracking and orbit
program derived from PATRICIA[5] and PETROS[6].

Two Families Interleaved: If sextnupoles are placed at every
quadrupole then their strengths are at a minimum. This approach was
the first one used, with the result that the dynamic aperture is very small
(see fig. 2). The term “interleaved” refers to any sextupole arrangement
that is not self-compensating to all orders. In this case the term applies to
the alternation of positive and negative sextupoles. That the interleaved
sextupoles scheme has a very small dynamic aperture relative to the other
arrangemenis is very striking in view of the fact that the strengths of the
individual sextupoles in the largest dynamic aperture in figure 2 are at least
twice as much as those in the interleaved arrangement, Sextupoles configu-
rations that cancel second order geometrical aberrations was examined for
dynamic aperture improverment. This was done by using more than two
families of sextupoles (in special cases, two families are sufficient) but it
did not improve the dynamic aperture. Thesc efforts are to be included in
my doctoral thesis {7].

Dynamic aperture for low emittance ring
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Figure 2: Dynamic aperture of the error-free low emittance ring with
various arrangements of sextupoles. See figure 3 for a diagram of the
thin-sextupoles-sandwiching-quadrupoles arrangement.

Two Families Non-interleaved: If sextupoles are placed exactly
minus identity matrix apart, or 180 degrees apart in phase if the beta func-
tions are equal at the sextupoles, then there is no lasting nonlinear kick, and
the dynamic aperture is in principle infinite. Of course quadrupole strength
error or a deviation in particle energy will make the phase advance between
sextupoles not exactly 180 degrees and the dynamic aperture will be finite.
In other words, the self-compensation is sensitive to the phase advance be-
tween thin-lens sextupoles. For instance, when a gaussian-distrituted rela-
tive strength error of standard deviation of .2% was put in the quadrupoles,
the dynamic acceptance decreased from practically infinity to 3x10~° m-rad
in the horizontal plane and to 1x10~* m-rad in the vertical plane.
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In reality, the sextupoles are thick magnets which can be modeled as a
series of thin-lens sextupoles separated by drift spaces. Since this is a form
of interleaving there will be some degree of dynamic aperture reduction.
The cases where the sextupole were split in two and in four gave similar
dynamic acceptances of about 1.5x10~* m-rad in both planes.

A comment should be made on the invariant ellipse in between the
sextupole kicks. Suppose a 25 mm by 2 mrad “ellipse” of particles in
the horizontal plane (near dynamic aperture) is injected at the start of an
error-free superperiod. Then the maximum kick given by the SF’sis 5 mrad,
which is much greater than 2 mrad, the maximum slope of the unperturbed
ellipse at the SF’s positions. Thus the ellipse is greatly deformed in between
sextupoles kicks, but is mote ot less restored outside of the sextupole self-
compensation unit.

Aberrations due to Sextupole Length
Consider the trajectory through two 90 degree FODO cells with thick
sextupoles at both ends for self-compensation. These two cells can be re-
garded as an independent beamline whose aberrations are to be reduced
locally. The two cells associated with the focusing sextupole SF, say, can
be diagrammed as follows:

o o 180 degrees —-————— e
SF-QF-SF-B-D-QD-D-B-D-QF-D-B-D-QD-D-B-SF-QF-SF
|]—-—one 90 deg. cell—||——one 90 deg. cell—|

Figure 3: Sextupole placement within two FODO cells.

where D is a drift space the same length as the sextupoles. The cells con-
taining the defocusing sextnpoles are adjacent and are equivalent. Notice
that two sextupoles instead of one is placed next to the end quadrpoles.
This is done to obtain a simple and symmeiric analysis. Also for stimplicity
no space is provided between the quadrupole and sextupole. This arrange-
ment is thought to be close enough to the perfect compensation scheme that
the separation of the two sextupoles near one quadrupole may be considered
as a perturbation. Separating the sextupoles in this way unnecessarily de-
creases the dynamic aperture, but this conservative symmetric arrangement
allows an easier observation of the nonlinearities emerging from neat-perfect
compensation.

The trajectory at any element can be written in terms of the coordinates
at the beginning of the beamline, i.e. the entrance of the first sextupole.
The calculation of the trajectory through a quadrupole is simplified to that
through a thin-lens quadrupole with drift spaces an each side of appropriate
length. Presumably, this approximation does not greatly modify the general
form of the sextupole aberration. The trajectory through the sextupole is
calculated by sectioning the magnet into a series of thin-lens sextupoles
separated by drift spaces. The apptoximation improves when the number
of thin-lenses increases.

A program using the REDUCE (8] algebraic manipulation language
available on the SLAC VM was written which expresses in analytical form
the aberration due to the length or separation of the sextupoles. The
number of pieces into which the sextupole was split can be enteted as a
parameter.

The expressions for the transverse coordinates =, 2’, y and 3’ at the exit
of the last sextupole is a huge polynomial in various powers of all the input
quantities, in particular, the initial coordinates at the first sextupole. Only
terms of order three or lower in the initial coordinates are extracted from
the program. To make the analysis more convenient, the initial and final
coordinates are linearly transformed to the middle of the closest quadrupole.
Since the transformations are linear, no aberration information is lost.

Below is part of the result for the simplest case, when the thick sextupole
is treated as one thin-lens sextupole centered in the original sextupole's
position in the beamline. The full expression correct to third order in
20,20,90 and yj are very long and canrot be published here due to lack of
space. Therefore we set yg = yg = 0. In the following expressions, M is the
integrated strength of each sextupole, Ls is the length of the sextupole, Lg
is the length of the quadrupole and L¢ is the length of the cell:
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Note that without the sextupoles, the final coordinates are just minus
the initial coordinates. Fach final coordinate has two non-linear terms in
zp and rj. Splitting the sextupoles in more pieces yields the same terms
but with more complicated polynomials in the quadrupole length (Lg) and
the sextupole length (Lg).

Using present design values (Lo=7.2 m, Lg=.3 m, Ls=.4 m, the space
between the sextupoles and their neighboring magnets is taken up by the
sextupoles) the quantity (Ls+Lg)/Lc, approximately the separation of
the sextupoles in units of the cell length, turns out to be a small value,
0.097, which is regarded as a perturbative quantity. The value used for the
SF integrated strength is about -8 m~2. The final coordinates are then,
with 3 = 3%@[4(7:

2= —zg— (3.6x107 m~%)2Z (zhB) -+ (3.4x10"4m~?) (2)8)°  (4)
and
(2pB) = — (=h3) ~ (3.9x10°m™ )23 + (3.6x107 'm~D)zo(xpB8)2.  (5)

The strong “left-over” monlinear perturbation term -3.9x10% #3 in equ.
(5) will exceed the linear coordinate {z43) when zp equals about .05 m.
Roughly, the dynamic aperture will be of that order of magnitude. Our
goal is to somehow eliminate these third order term.

Octupole effect: An octupole produces a nonlinear kick propor-
tional to a third degree polynomial in the position coordinates:

1
A = 60(“3 ~ 3zy?) (6)
and N
Ay = 60(113 - 3a%y) M

where O is the integrated octupolar field strength. Since the effect of the
octopole length is fourth order in coordinates, one can treat the octupoles
as thin lenses. If identical octopoles of strength O were superposed on the
fields of the QF’s at the extremities of the beamline as in figure 4 (they
contribute addititively due to the polarity of the octupolar fields, see ref.
[1]) then their contributions to the aberrations are:

Zoet, =0 and =zl = %Ozg

This octupole contribution cancel only one of the third order sextupole
terms, albeit the strongest one (in equ. (5}), as the other two huve two
extra powers of (Lg + Lg)/Le, which is a small quantity. To second order
in that factor, the required value of the octopole is

5 (Le + Lg)

R tab e SY (8}

r2
O~ ~3M*(Ls + L)1 - 5 Ie

The same results hold for correcting the aberrations of SD) in the vertical
plane. A more complicated scheme can be pursned with extra octupolar
fields centered at the other quadrapoles within the two FONO eells ns
shown in fignre 4. These can be made to cancel the other third arder terms

in the horizontal plane.

SP-{QF/0)-SF-B-D-(QD/02)-D-B-D-(QF /03)
-D-B-D-(QD;04)-D-B-SF-(QF/O)-SF

Figure 4: Octupole placement in compensated FODO cell. Octupolar fields
would be “shaped” onto the quadrupole magnet poles.

Space does not permit me to mention the terms involving yo and g,
except for the fact that the largest term among these cancel when the
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largest horizontal aberration term is cancelled. Obviously, terms of higher
order in (Lg+ Lg)/L¢ cannot all be cancelled, but they could be selectevily
minimized by optimizing the strengths of the 02, 03 and 04 octupoles.

Tracking Results

Tracking was done using the single oclupole correction of the sextu-
pole third order aberration. Octupoles of integrated strength -94 m=2 were
placed in the center of the quadrupoles that are sandwiched between sex-
tupoles. Because the SF’s and the SD’s are powered almost equally {there
are twice as many SD’'s as SF’s), the strength of the octupoles required on
the QD’s and the octupoles required on the QF’s are the same. The sign
of the octupoles strength must be negative for both.

The inclusion of octupoles causes a definite increase in the dynamic
aperture of 20 or 50% along both planes, as shown in figure 5. Also, the
dynamic aperture worsens for larger octupole strengths, more or less veri-
fying that the calculated octopole strength was optimal.
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Figure 5: Dynamic aperture with octupoles correcting the effect of the
separation of sextupoles sandwiching quadrnpoles minus nunit matrix apart.

Conclusion

A ring with very low emittance was demonstrated to have a surprisingly
large dynamic aperture. The use of the basic non-interleaved sextupole
scheme proved to be a great improvement over the interleaved sextupole
dynamic aperture. Some further correction was achieved using octupoles
to cancel third otder terms.

An analysis of the natural wiggler multipole component effect on the
dynamic aperture should be conducted now that a large starting dynamic
aperture is achieved.

Further optimization such as that of the cell length in order to decrease
the emittance in “exchange” for some deterioration of the dynamic aperture
may be considered after all the nonlinear beam dynamic studies have been
completed.
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