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Abstract 

Structure mode frequency spreads are shown to 
have a rather different influence on beam breakup 
growths than betatron frequency spreads. The present 
analytic and numerical studies show that a finite 
spread in the breakup mode frequency leads to an 
algebraic decay of the beam breakup instabilities even 
if the quality factor Q -+ m. Effects of stagger 
tuning are examined. 

Text 

Beam breakup (BBU) instabilities result from the 
coupling between the transverse motions of the 
electron beam and the deflecting modes of the 
accelerating structures. [l] Control of BBU growth 
relies mainly on the reduction of this coupling. [2] 
This can be achieved either by restricting the 
transverse motions of the beam through external 
focusing (l-81 (e.g., solenoidal, 131 quadrupole or 
higher order focusing, [2,7] ion channel, [5,6] etc.) 
or by proper modification of the deflecting modes 
(e.g., stagger tuning, (2,9] lowering of the quality 
factor Q of the deflecting modes, [lo] etc.) Both 
methods have been suggested early on and adopted. 

Although the lowering of Q is of immense 
practical importance [lo] to control BBU, its effect 
on BBU growth is not a matter of curiosity, for it 
merely introduces the well-known damping factor exp 
(-w t/2Q) to the amplitude of the disturbances. Here, 
w 9s the breakup mode frequency of the structure. 
Lgsser known and of more theoretical interest are 
other stabilization mechanisms such as detuning and 
various methods of focusing. To treat these various 
mechanisms on equal footing, without the interference 
of damping due to finite Q, we may set Q = m and then 
compare the resulting growths [11,7] when the various 
effects are individually incorporated. In this paper, 
we shall use this strategy and show that a spread in 
the breakup mode frequencies would be far more 
effective to control BBU than a spread in the betatron 
frequencies. 

The effects of frequency spreads are analyzed 
here in a somewhat different manner than was adopted 
in the literature. [8,9,12,13] We begin with the BBU 
dispersion relationship 16,111 

(w - kv)2 - oc2 = EOo3/(W - MO’. (1) 

This dispersion relationship describes the excitation 
of the beam modes (w - kv = tw ) by the breakup modes 
(w = w ) on a continuous, coas F. rng beam whose 
transvgrse displacement varies as exp(iwt - ikz). 
Here w is the betatron frequency of the (linear) 
forusikg field, v is the electron speed, and E is the 
dimensionless coupling constant Ill] which is 
proportional to the beam current and transverse shunt 
impedance. The evolution of BBU is described by the 
Green’s function 

G(z,t) - s dw exp[iwt - ik(w)z], (2) 

where 

l/2 

(3) 

is obtained from the dispersion relation (1). A casual 
examination of Eq. (2) suggests that, at fixed a, the 
asymptotic behavior (t + m) of G(z,t) is dictated by 
the singularity w = w in Eq. (3). In the imyediate 
neighborhood of this gingularity, the term w , which 
represents the focal strength, is unimportanf. A 
finite spread in the betatron frequency does not change 
the singular behavior of k(w) either, and therefore 
cannot influence the asymptotic BBU growth. [11,7] In 
physical terms, the BBU is locked onto the breakup mode 
frequency (w = w ) so that neither a linear focusing 
field nor phase gixing due to a spread in the betatron 
frequency can break this locking in a long pulse beam 
if Q = m. [14] 

On the other hand, a spread in the breakup mode 
frequencies might be expected to modify the BBU growth 
since a modification in w alters the singular behavior 
of k(w) in Eq. (3) altoge?her, and the asymptotic BBU 
growth would be modified accordingly. It was this 
observation which motivated the present study. 
Physically, a finite linewidth (due, for instance, to 
mechanical tolerance in the cavities) would contribute 
to a spread in the breakup mode frequency [9] and 
stagger tuning would introduce [2,9] a a-dependence in 
w ; both might lead to a change in the structure of 
k?d. 

To examine these possibilities, we set w = 0 
henceforth. The effects of a finite spread ifi the 
breakup mode frequency w. may be studied by simply 

replacing the factor e3/(0 - wo) in Eq. (1) by 

I dwof(~o)e~03/(W - wo), 

where f(w ) is the spectral distribution function 
normalize 8 so that 

J dwof(wo) = 1. 

We next calculate k(w), insert it into Eq. (2), and 
determine the asymptotic behavior of G(z,t). For the 
simple distribution function 

f(wo) = 
l/A ; (w. - ;o)/;o < A/2 

(4) 
0 ; otherwise, 

a saddle point calculation yields, to two orders, 

= 2 A(rI) exp 1.64W 1’3 se11 f (5) 
J-2 

where A(T ) and S(r ) are shown in Fig. 1. In Eqs. 
(4) and (!j), A reprbsents the full width spread in the 
breakup mode frequency whose mean is ; 

OL 
C is a 

normalization constant, 2 5 woz/v, T r tiot, 

W = E(T - Z)Z2, 

y 3 (T - Z)A 3/2/2&/2, (6) 

- 2/3 -- 
S(rI) = - Im 0.485 m-r1 

E [ 
1 + l/w(J - l)rI* 

0 
t (7) 
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Fig. 1 The analytic solutions S(rl) and A. 

A(rl) = (G2 - l)/+ - r12(w2 
l/2 

-1+ , 
II 

(8) 

and ; = $-cl) is the (meaningful) solution to the 

transcendental equation 

? 2(i2 - 1)2Ln (%] - 1 = 0. (9) 

The following asymptotic dependences of A and S might 
be useful: S(T~) + 1 for ~1 << 1 and S(T~) + 

(enrl)1’2/,11’3 for Tl >> 1. Over the range shown in 

Fig. 1, a reasonable extrapolation gives A(rl) = 

0.00328/r1°*828 for ~~ < 0.4 and A(r1) = 

0.00265/r11’062 for ‘1 2 0.4. As will be shown in 

Fig. 2, this analytic solution (5) is an excellent 
approximation to the numerically integrated solution 
[except at T = 2, where the asymptotic solution (5) 
diverges]. 

The solution (5) and Fig. 1 reveal the following. 
First, for a given spread A in the breakup mode 
frequency, this spread has little effect on the BBU 
evolution if the pulse length (T), machine length (Z), 
beam current and shunt impedance (E) combine in such a 
way that 7 < O(l), in which case the BBU evolves 
according 4 o the classic solution of Panofsky and 
Bander. [l] However, if ‘1 >> O(l), Fig. 1 and Eq. 

(5) show that IG(Z,T)I tends to zero like l/T as 
T + m. This algebraic decay is a result of phase 
mixing due to the finite spread in the breakup mode 
frequency and it begins to appear for ~~ > O(1). This 
decay is weaker than the exponential decay associated 
with a finite Q of the cavity, but is much stronger 
than that produced by a finite spread in the betatron 
frequency. 

The effects of finite linewidth A may also be 
studied by a direct numerical integration of the 
governing equations. We pretend that the normalized 
transverse displacement X(Z,T) of the beam is to be 
excited by N deflecting modes, the i-th mode has a 
frequency woi , given by woi/wo = i. = (1 - A/2) + 

(i - l)A/(N - l), i = 1, . . ..N. IA keeping with the 
above model (cf. Eq. (4)], we assume that there is an 
equal probability (l/N) for each of these deflecting 
modes to be excited. Thus, 
governed by 

the evolution X(Z,T) is 

(k + k12 X = ; (A1 + . . + AN), 

6, ,. , 7 , , , , , 

0 200 400 

T 

Fig. 2 Numerical solutions at various breakup mode 
frequency spreads (A). The dotted curves 
represent the analytic solution. 

where A., the normalized amplitude of the i-th mode, 
is excited by the transverse displacement X(Z,T) 
according to 

a2A. _ 2 
>+a 
aT2 i Ai = 2&X, i = 1, . ..N. (11) 

We assume initial rest condition and homogeneous 
boundary condition for these N + 1 equations (lo), 
(11). Only one non-trivial boundary condition is 
imposed at Z = 0: X(O,T) = 1 for 0 < T < 0.2 and is 
zero otherwise. This form of the excitation mimics an 
impulse excitation and the numerical solution X(Z,T) 
may then be compared with the Green’s function Eq. 
(5). [The latter solution corresponds to the limit 
N + m.] 

Shown in Fig. 2 is the numerically integrated 
solution X(Z,T) according to (lo), (ll), with N = 16, 
for A = 0.02, 0.05, 0.1, 0.2. We set 2 = 40 and 
E = 0.000413 in this figure. The dotted curves in 
this figure represent the analytic solution (5), in 
which the constant C is determined by a “one-point- 
fit” with the numerical solution. The high values of 
A used here were chosen to accentuate their effects 
for T < 400. 

Figure 2 clearly shows the stabilizing effect due 
to a finite spread in the breakup mode frequency. 
When the spread (A) is small, as in the A = 0.02 case, 
its effect on BBU growth is negligible for T < 400, 
and the Green’s function is basically that of Panofsky 
and Bander. [l] As A is increased to 0.05, saturation 
of BBU growth begins to appear at T = 150, 
corresponding to ~1 = O(1). For still higher values 
of A, algebraic decay of the amplitude is observed. 
This result is somewhat different from Ref. 9. It is 
interesting to note that the analytic solution (5), 
which contains two approximations to (10) and (11) 
Icf. f N + m limit, and then asymptotic analysis], 
could accurately model the numerical solutions to 
(lo), (11) with N = 16. On the other hand, it is 
remarkable that the use of only sixteen modes in the 
numerical calculation could adequately model phase- 
mixing and accurately display the transition of the 
solutions when T - O(1). [The mild increase in the 
numerical soluti&-X(Z,T) as T + 400 in the A = 0.2 
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case in Fig. 2 results from the constructive 
interference of the finite number of modes used in the 
numerical integration]. 

Note that the transition time ~~ = O(1) is the 
time when the phase mixing factor Aw t is roughlr,3 
balanced by the BBU exponentiation fictor 1.64W 
[cf. Eq. (5)j. This result is perhaps not too 
unexpected from the structure of the dispersion 
relation (1). A full calculation, however, was 
required to identify the algebraic decay associated 
with a finite A. 

0.4 

0.2 

X 

0 

(Cl RANOOM w,,(Z) 

0.2 

X 

Fig. 3 Evolution of BBU when the breakup mode 
frequency w is a function of Z over 0 5 
Z < 40: (a9 w 

(b) 8 
increases linearly by twenty 

percent. 
percent. (c) w” 

decreases linearly by twenty 
is a random fun_ction of Z 

bounded between’0.9 Go and 1.1 w 
0’ 

The effect of stagger tuning may also be 
investigated by integrating Eqs. (10) and (ll), where 

we now set N = 1 and assign a z-dependence to cl = 

coo/; . 
0 

Shown in Fig. 3 are the numerical solutions at 

Z = 40 for three cases, each of which contains a 

maximum variation of W1 of twenty percent over 0 < 2 < 

40: (a) &l = 0.9 + 0.2 (Z/40), (b) wl = 1.1 - 0.2 

(Z/40) and (c) i,(Z) is a random function 

bounded by twenty percent variation about unity over 
0 2 z 5 40. 

Comparing Fig. 3 with the A = 0.2 case of Fig. 2, 
we see that a non-constant w (z) has a similar 
stabilizing influence as an yntrinsic spread in the 
breakup mode frequency for the parameters under 
consideration. At the moment, we have not obtained 
analytic formulas similar to Eq. (5) for general 
w (z), and no readily usable scalings emerged from the 
lgrge body of numerical results which we obtained for 
general w,(z). 

In stimmary, finite spreads in the breakup mode 
frequencies produce a considerably different effect on 
BBU from finite spreads in the betatron frequencies. 
Such a difference was transparent in the present mode 
coupling analysis. A spread in the breakup mode 
frequencies leads to an algebraic decay of BBU even if 
Q i m. Asymptotic formulas and time scale for this 
phase mixing to occur are presented. They are in 
excellent agreement with numerical integration. 
Effects of stagger tuning was also examined 
numerically. 

One of us (Y. Y. Lau) would like to acknowledge 
stimulating discussions with G. Craig and V. K. Neil 
of Livermore, W. K. H. Panofsky, R. Ruth and K. 
Thompson of SLAC. He was supported by the Department 
of Energy, Contract No. DE-AI05-86-ER13585, and by the 
Office of Naval Research. D. G. Colombant was 
supported by the Defense Advanced Research Projects 
Agency monitored by the Naval Surface Warfare Center. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

10. 
11. 

12. 

13. 

14. 

References 

W. K. H. Panofsky and M. Bander, Rev. Sci. Inst. 
2, 206 (1968). 
R. Helm and G. Loew, Linear Accelerators, Eds. P. 
M. Lapostolle and 
A. L. Septier, (North Holland, Amsterdam, 1970), 
Ch. B.1.4., p. 173. 
V. K. Neil, L. S. Hall and R. K. Cooper, Part. 
Accel. 2, 213 (1979). 
P. B. Wilson, AIP Proc. No. 87, Sec. 6.1 (1982). 
G. J. Caporaso, Proc. of the LINAC ‘86, Stanford 
Linear Accelerator Center, 1986, p. 17. 
R. J. Briggs, University of California Report No. 
UCID-18633 (1980), unpublished. 
D. C. Colombant and Y. Y. Lau, Appl. Phys. Lett. 
53. 2602 (1988). 
E’L.-Gluckstekn, R. K. Cooper and P. J. 
Channell, Part. Accel. 16, 125 (1985). 
R. L. Gluckstern, F. Nex and R. K. Cooper, Part. 
Accel. 23, pp. 37 and 53 (1988). 
R. B. Pamer, SLAC Publication 4542 (1988). 
Y. Y. Lau, Naval Research Laboratory Memo Report 
No. 6237 (1988); also in these proceedings 
D. Chernin and A. Mondelli, Part. Accel. (to be 
published). 
K. A. Thompson and R. D. Ruth, presented at Intl. 
Workshop on Linear Colliders, Capri, 1988. 
If nonlinear effects are included, the locking 
phenomena mentioned here may be broken, as 
demonstrated in Ref. 7, where we showed that BBU 
can be stabilized by a sufficiently strong 
nonlinear focusing field even in the limit Q + =. 
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