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Abstract 

The behavior of ferrite loads commonly found in induction 
accelerators has important consequences for the performance of 
these accelerators. Previous work by the authors on modeling 
the electromagnetic fields in induction cavities has focussed 
upon llsr of a simple, phenomcnological model for the process 
of magnetization reversal in these ferrite loads. In this paper 
we consider a model for magnetization reversal which is more 
deeply rooted in theory, and present a simulation of the reversal 
process based upon this model for an idealized set of boundary 
conditions. 

Introduction 

The subject of rapid magnetization reversal, in addition 
to its substantial theoretical importance, has acquired a prac- 
tical significance as well, arising from the use of this process 
in linear induction accelerators (linacs). In these devices, the 
large electromagnetic fields generated by rapid flux reversal in 
ferrite toroids are used to accelerate charged particles. It is 
necessary to understand the flux reversal process in order to 
model t,hese fields. 

In general, the reversal process is extremely complicated 
because it results from the simultaneous influence of four dif- 
ferent interactions: the magnet~ic, anisotropy, magnetoelastic, 
and exchange interactions. Because of this complexity, a gen- 
eral treatment of the process is, at present, hopelessly diffi- 
cult,. One can, however? by limiting one’s attention to regimes 
in which one or two of the interactions dominate, reduce the 
complexity to manageable levels. Of these limiting regimes. 
thrrc arc two which may bear upon the flux reversal process in 
linacs. In the first, dominated by magnetic interactions alone, 
the flux rcxversal occurs by a process called uniform rotation [l]. 
In the second, ihe reversal occurs by domain zuall motion. [a], 
and is dominated by the combined effect,s of both anisotropy 
and exchange. 

The authors are currently working to incorporate math- 
ematical models for both regimes into a numerical algorithm 
which simulates the electromagnet,ic fields inside linac cavities. 
The focus of the present paper, however, will be upon the uni- 
form rotation regime. We will briefly discuss the theoretical 
basis of the model for this regime, and present the results of a 
numerical simulation of the flux reversal process in an infinite 
cylinder with idealized boundary conditions. 

Magnetization Reversal by Uniform Rotation 

The fundamental supposition underlying the uniform ro- 
tation model is that there exist circumstances in which the 
reversal process is governed by magnetic interactions alone. 
The model neglects the effects of anisotropy, magnetostric- 
tion, and exchange. Neglecting anisotropy and magnetostric- 
tion is at least superficially plausible for the soft ferrites used 
in linnc ravities. since the maximum anisotropy and magne- 
toelastic energy densities in such materials are both generally 
smaller (sometimes much smaller) than the magnetic energy 
density. However, t,he energy density associated with the ex- 
change interaction can be several orders of magnitude larger 
than the magnetic energy density, if neighboring dipoles in 
the lattice have significantly different orientations. It can be 
show11, though, that if the orientation of the atomic dipoles 
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does not change significantly over a distance on the order of 
10’ lattice spacings (Z lo-> cm), then the exchange energy 
density is indeed negligible compared to the magnetic energy 
density. (This is a consequence of the short-range nature of 
exchange: a given dipole interacts via the exchange interac- 
tion only with its nearest neighbors, whereas the same dipole 
interacts magnetically with every other dipole in the sample.) 
Thus, the assumption that exchange may be neglected can be 
seen as equivalent to the assumption that throughout the re- 
versal process, the magnetization remains a gradually varying 
function of position. 

Consider a rigid, cubic lattice of magnetic dipoles. (The 
choice of a cubic lattice is a convenience; the following treat- 
ment may readily be extended to any other regular array). If 
pt is the magnetic moment of the ith dipole in the lattice. then 
the torque .G; on that dipole is given by: 

n;, = g ?z g1 x a’,, (1) 

wherr T, is the angular mo~nrntum of the ith dipole, antI a’, is 
the magnetic induction at the ith lattice site due to all other 
dipoles in the lattice and sources outside the sample. It can 
be shown that gi is related to the volum,e naerage magnetic 

induction B’ and volume average magnetic moment density h-i 
by the expression [3] 

a’, = g - ye. (2) 

where p,, is the free-space permeability. 
The net angular momentum of an atomic dipolr is related 

to its magnetic moment by 7 = r-‘,Z: where 2. the gyromag- 
netic ratio, is a constant which is characteristic of the mat,erial. 
Using this and employing Eq. (1) we obtain: 

2; = -f/T1 x a’,. (3) 

Multiplying by the number of dipoles per unit volume. and 
using Eq. (2), yields 

AL&x (q%) =yiGxs. (4) 

This expression, essentially an equation of motion for the mag- 
netization, was first introduced by Landau and Lifshitz [4], and 
it is rigourously correct provided that our assumptions are cor- 

rect. Notice, however, that since h? is perpendicular to both b’i + 
and B, the equation implicitly conserves the magnetic energy 
of the sample; this, unfortunately, is at odds wit,h the observed 
tendency of magnetic materials to dissipate magnetic energy 
(into lattice vibrations) whenever the magnetization state of 
the material changes. (Eq. 4 is deficient in this respect, be- 
cause we assumed that the lattice was perfectly rigid.) The 
dissipation mechanisms involved in magnetization reversal are 
poorly understood; despite this, we are forced to take account 
of the dissipation in some fashion, and we therefore make the 
following modification of Eq. (4) suggest,cd by Gilbert [5,F]: 

> + . kd- t 
Au- = yAi x B + ,M x 121, 
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where M, is the saturation magnetization of the material. The 
added term is a damping term, since it produces a component 
of rotation that is antiparallel to the torque exerted by the 
magnetic induction The constant kd is to be treated as an 
adjrlstable parameter. It, should be emphasized that there is, 
at present, no sound theoretical basis for this characterization 
of the damping process. 

The Solution for Simplified Boundary Conditions 

Under the assumptions set forth in the previous section, 
the volume-average electromagnetic fields in a region of space 
containing ferrite are governed by the following set of equa- 
tions: 

v.d=o, v.L?=p, (6) 
ii = ylL1 x B’+ +A2 x Ia, 

s 

provided that the ferrite remains in the uniform rotation regime. 
WC now obtain solutions to this set of equations for a simple, 
one-dimensional problem. We choose for the sample geome- 
try an infinite circular cylinder of radius a. This geometry is 
depicted in Fig. 1. (Note that this geometry does bear some 
resemblance to that of the ferrite toroids in linac cavities, since 
an infinite cylinder is equivalent to a toroid of circular cross- 
section in the limit as the inner radius of the toroid goes to 
infinity.) The applied field g,, i.e., the magnetic induction 
due to sources outside the cylinder, is assumed to be spatially 
uniform in the vicinity of the cylinder, and have a time varia- 
tion given by: 

& = B,i, (t -=c O), 

n’, = -B,i, (t L 0). I 
(7) 

The applied field, then, is assumed to be reversed instanta- 
neously at t = 0. If the system is initially in equilibrium, then 

at t = 0, ,G = M,2; it follows that for t > 0, $ = 0, and sys- 
tem remains in (unstable) equilibrium. This situation would 
never arise for any physically realizable set of boundary con- 
ditions since, among other things, one could never keep the 
applied firld perfectly parallel to the magnetization during the 
l)roccss of reversing its direction. But for the idealized bound- 
ary conditions used here, it is necessary to assume some initial 
angular displacemrnt in &i in order for the reversal to occur. 
The rhoice WC will make is: 

iz’i(77) = M, cos 6i + ,21, sin 64. 6 < 7;. (8) 

It is to br emphasized that this rather artificial assumption of 
initial di~l)laccment will not be necessary when realistic prob- 
lc,lrl gczometry and I)oundary conditions are used. 

Since the applied field, the initial magnetizat,ion state, and 
tllrl gtrvrrning equations all havr cylindrical symmetry, it fol- 
lows that the rrsltltant motion of the magnetization will have 
thr same symmet,ry. We therefore require that E and l? ex- 
hibit only radial (p) variation. which forces E, = B, = 0, and 
)-ivlrls thr, following relations: 

$$ (pH$) = thzr - F = E& 

ill?: ~ :L I,” 
Dp )I 

(9) 
TVr apply the boundary conditions Em = $$ = 0 at p = 0, and 
apply a radiation condition to the fields at p = co. Eqs. (5) 
ar:(i (3’1 can bc integrated numeric-ally using an explicit time 
iut,egraiion scheme [7]. To carry out the integration, the field 

llR5 

Fig. 1. Sample geometry. Cylinder has circular cross sec- 
tion of radius a, and is infinite in the axial (2) di- 
rection. Cylinder is surrounded by free space. 

components are represented at discrete radial points, and at 
discrete time steps. The electric field is represented at integer 
time steps, t = 0, At, 2At, . . . . where At is the time step size, 
and at radial positions p = 0, Ap, 2Ap,..., where Ap is the 
radial node spacing. The magnetic induction is represented at 
radial positions p = Ap/2, 3Ap/2, . . . . and exists at half-integer 
time steps, i.e., t = At/a, 3At/2, . . . . The parameters At and 
Ap are chosen to satisfy stability criteria. 

Fig. 2 depicts the solution for M,(t) averaged over all 
radii for a = 10 cm, B, = 9.42 x lo-” T, M, = 300 KA/m, 
7 = -.278 rad+ec-l.T-‘, and a dielectric constant of E, = 12. 
These values are representat,ive of the situation in the ATA 
(Advanced Test Accelerator) linac cavities. NonuniformitiPs in 
the induced magnetic field cause significant radial variations 
in hf to develop during the switch, an effect that becomes 
more pronounced as the damping parameter is decreased. For 
the results presented in this paper the damping parameter was 
taken to be kd = 4, and was chosen to produce a switching 
time in agreement with the values observed in the ATA. Fig. 
3 shows the solutions for M,, i”l4: and ,VP at p = n/2. It 
may be observed that for our choice of parameters hi, is quite 
small, reaching a maximum of x 10w3M, halfway through the 
switch. Therefore. to a first approximation, the rotation of 
6!, at a particular radius p, occurs tangent to the cylinder 
of constant p. The time-evolution of the flux of this tangent 
component of hl is depicted in Fig. 4. 

It is also worth noting that the switching time can be min- 
imized with respect to the damping parametc>r. The minimum 
switching time for B, = 0.42 x lo-* T is approximately 1/4th 
of the value observed in the .4T.4, and is obtained for kd x 1. 

These results can be understood qualitatively in the fol- 
lowing way: The magnetic energy density of the sample at 
t = 0 is given by: 

W’, = +hl’ + p,hlB: (10) 
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where the first term represents the magnetic self-energy of the 
sample, and the second term represents the interaction energy 
between the sample and the applied field. After the flux rever- 
sal the magnetic energy density is 

W, = -FM2 - ~JvfB. (11) 

So the magnetization reversal can be thought of as resulting 
from the tendency of the sample to seek out a state which 
lowers its interaction energy with the applied field. However, 
the magnetic self-energy of the sample (first term) is typically 
two orders of magnitude larger than its interaction energy with 
the applied field (second term). It follows that since the sample 
starts out in a state of minimum magnetic self-energy, it must, 
to first order, remain in states of minimum magnetic self-energy 
throughout the process of reversal. It can be shown that states 
of minimum magnetic self-energy are uniquely those states for 
which V Ai? = 0 everywhere, and an examination of Fig. 4 
reveals that the intermediate magnetization states are, indeed, 
states in which the divergence of A? is very nearly zero (in 

fact, if we ignore the small radial compo;ent of 2, V ,%?f is 
rigourously zero). 

Conclusions 

The Landau-Lifshitz-Gilbert equation can be used in con- 
junction with Maxwell’s equations to model the magnetization 
reversal process in those situations in which the non-magnetic 
interactions in the material are negligible. We have seen that 
the resulting behavior, called uniform rotation, is characterized 
by intermediate magnetization states for which V. i!? M 0, and 
may be described as a precession of the magnetization vector 
about the small demagnetizing field that is induced during the 
switch. 

The theory underlying the uniform rotation model which 
we have presented is incomplete in two respects. The first 
results from the purely ad hoc nature of the model’s charac- 
terization of the dissipation process. The second results from 
the inability of the model to predict its own threshold, that 
is, to specify the set of circumstances in which it will be valid. 
.4lthough a general theoretical treatment of these issues has 
proven a formidable task, it should be possible to resolve them 
experimentally for any given material, should the need arise. 

The work presented here is part of a broader attempt by 
the authors to simulate the magnetization reversal process in 
induction linacs. This work includes (1) the incorporation of 
the uniform rotation model, and a separate model for domain 
wall motion, into a general numerical algorithm for field sim- 

ulation in linacs; (2) an attempt to gain a theoretical under- 
standing of the thresholds and dissipation mechanisms of these 
regimes; and (3) an effort to verify experimentally the existence 
of both types of behavior. 
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Fig. 2. M,(t) averaged over all radii for E, = 12, M, = 
300 KA/m, B, = 9.42 x 1O-4 T! kd = 4, 7 = 
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Fig. 3. Components of G(t) at radial position p = a/2. 
M,, while small compared with M,, produces a ra- 
dial demagnetizing field that becomes comparable 
to the applied field. 

Fig. 4. Depicts the flux of h-i for a shell of constant p. 
(a) Initial state, consisting of +z-directed magne- 
tization with a small azimuthal perturbation. (b) 

and (c) Intermediate states, in which the flux of %? 
spirals around the cylindrical shell, while acquiring 
a small radial component. In effect, &? precesses 
about the demagnetizing field associated with the 
small radial component M,. (d) The final state. 
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