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This paper outlines possible intensity limits due to the 
coherent betatron motion for the upgraded Tevatron with the 
electrostatic separators. Numerical simulation shows that this new 
vacuum chamber structure dominates the high frequency part of the 
coupling impedance spectrum and more likely will excite a slow 
head-tail instability. A simple stability analysis yields the 
characteristic growth-time of the unstable modes. 

Coherent Betatron Motion 

As was shown in Ref.1, through a systematic numerical 
analysis of the Sacherer’s model2, the resulting growth-time vs 
chromaticity plots suggest existence of the I> 1 slow head-tail modes 
as a plausible mechanism for the observed coherent betatron 
instability. This last claim is based on a very good agreement 
between the measured values of the instability growth-time and the 
ones calculated on the basis of presented model.’ 

One obviously expects, that even more pronounced version of 
this instability will also be present in the proposed high-intensity 
upgrades, Therefore, we should examine its prospective strength in 
the Tevatron with the new electrostatic separators. Encouraged by 
the successful explanation of the Tevatron’s instability’ we will apply 
the same intuitive model of the slow head-tail instability to examine 
the impact of the separators on this instability. 

‘Following -the Sacherer’s model2 one assumes that the 
amnlitude of the transverse beam oscillation (related to the pick-up 
monitor signal) is a superposition of a standing plane wave pattern 
(with the number of internal nodes defining the longitudinal mode 
index f) and a propagating part describing the betatron phase 
lag/gain, governed by the characteristic chromatic frequency, o+, = 

cw,/r~. One can easily find the power spectrum of the transverse 
beam signal by taking the Fourier transform of the amplitude signal, 
The resulting beam spectrum is shifted by o5 due to the presence of 
the propagating wave component (finite chromaticity). Periodicity 
given by the revolution period, 2n/o,, yields the discrete frequency 
spectrum with spacing oo. 

wp=(p+v)wo, (1) 

where p is an integer. The explicit form of the power spectrum is 
given by the following expression2 

where 

pQlJ) = h’(o) , 
2 h&d 

F=-- 
(2) 

4 1 + (-l)~cos(2oe) 
hP) =$ (c+ lj2 [(2&/x)2- ([+ 1)2]2 . 

Here 5^ is the rms bunch-length in set and h, will serve as a spectral 
density function in evaluation of the averaged transverse coupling 
impedance. 

Following Sacherefs argument3, one can generalize a simple 
equation of motion describing a wake field driven coherent betatron 
motion of a coasting beam to model the head-tail instability of the 
bunched beam. A simple dipole oscillation of the individual Fourier 
components of the beam is governed by the following equations 

m 

(vwO)2 - Cl: - i 9 I, 1 &l(o+) pfq - wr;) = 0. 
l”o 2&Z v+ l’“$“_” 

(3) 

The imaginary part of the coherent frequency, a,, (with the negative 
sign) represents the inverse growth-time and is expressed by the 
following formula 

-=-d!!% Re -ii 1 

z[ 47tEv w-f ’ (4) 

where E, is the total energy of a proton and the effective impedance 
is defined as follows 

m 

2lt 1 Zfff=- - c Z,(q3) ptwp’ - WC) 
(I+ 1j2 2w,+ p’=em 

The above result can be compared with the growth-time 
obtained in the framework of the Vlasov equation-based description 
of the slow head-tail instability. The so-called “air bag” model3 has 
exactly the same generic form as given by Eq.(4) with the effective 
impedance introduced as an average over a different set of spectral 
density functions; namely the Bessel functions of the first kind. 

In order to evaluate the effective impedance, given by Eq.(5), 
one has to convolute the transverse impedance, which will be 
discussed in the next section, with the beam spectrum, Eq.(2). The 
result of the above summation obviously depends on chromaticity. 

Transverse Couplina Impedance 

Our consideration will be confined to the real part of the 
impedance only, since the imaainarv hart does not enter exnlicitlv 
into the growth-time form&e g&& by Eqs(4) and (3). Wk 
tentatively identified five dominant sources of the transverse 
impedance: electrostatic separators, kicker magnets, bellows, beam 
position monitors, resistive wall and magnet laminations. 

Here we will concentrate on the fist contribution induced by 
a set of 24 electrostatic separators, since the remaining four 
contributions have already been discussedd. Geometry of a single 
unit is depicted in Fig.1. The transverse coupling impedance was 
evaluated numerically using the MAFIA code (real time solution of 
the Maxwell equations for a given geometry excited by a Gaussian 
test bunch). Calculated Fourier transform of the transverse wake field 
is translated into the transverse impedance in Ohm/m. The resulting 
solution is illustrated in Figs. 2 and 3. 

The above contribution will serve as a starting point for 
calculation of the effective impedance, which will be carried out in 
the next section. 
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Fig. 1 

Effective Imuedance 

In order to evaluate the effective impedance one has to 
convolute the transverse impedance with the beam spectrum 
according to Eq.(S).The result of the above summation obviously 
depends on chromaticity. 

One can notice (see Figs.2 and 3) that the transverse 
impedance Zl(w) has a diffraction-like character; a principle 
maximum of width h= XC/L at the origin and a series of equally 
spaced secondary maxima governed by the same width. Similarly, 
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the harmonics of the beam spectrum, p’(w - ws), have one (f= 0) or a 

pair (I 21) of principle maxima of width E = k/ 2: followed by a 
sequence of secondary maxima. Both spectra are sampled by a 
discrete set of frequencies, (up = (p + v)oO. In case of relatively long 
proton bunches in the Tevazon, both widths h and E are comparable 
and they are of the order of the chromatic frequency, w5’ evaluated at 
about 10 units of chromaticity. These features combined with the 
convolution formula for the effective impedance, Eq.(5), result in 
substantial ‘overlap’ of the transverse impedance and the beam 
spectrum, which in turn leads to large values of effective impedance 
for relatively small chromat cities (5 - 10). 

e:h-Time Summary 

Assuming only one dominant contribution to the transverse 
coupling impedance (due to the electrostatic separators), the inverse 
growth-times were calculated numerically according to Eqs.(l)-(5) 
The study was done at the injection energy (150 GeV), since the 
instability growth-rate is inversely proportional to energy. For the 
purpose of this model calculation we assumed a train of high 
intensity (3x10” ppb), relatively long (E = 0.5 eV-set), proton 
bunches injected into the Tevatron. The transverse beam size is given 
by the normalized rms emittance of E = 4 II mm mrad.The resulting 
growth-rates as a function of chromaticity evaluated for different 
slow head-tail modes (C = 0, 1, 2, 3) are illustrated in Fig.4. 
Furthermore, the results ;Lre summarized in Table 1. One can 
immediately see a qualitative difference between the I= 0 and C> 1 
modes; the C= 0 mode is always stable for positive chromaticities, 
while the stability of the I>_ 1 modes strongly depends on 
chromaticity and longitudinal emittance of the bunch. Table 1 
collects extreme values of the characteristic growth-times, z’, for 
various slow head-tail modes, & together with the values of 
chromaticity, &,,,,, corresponding to to the most unstable points of 
the above modes. The Tevatron is dominated by the C= 2 mode of the 
slow head-tail instability. One can see (Table 1) that the lowest mode 
is stable (C= 0) and the most unstable mode (f = 2) is characterized 
by the growth-time Al= 10x1CP3 sec. 
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