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Introduction 

We have recently derived>' 3 
an integral equation 

for the axial electric field at the pipe radius in the 

presence of an azimuthally symmetric cavity of 

arbitrary shape in a beam pipe of circular cross 

section. We have further shown that the local average 

of,:yne coupling impedance over frequency decreases as 

k for high frequency, essential1 
P 

independent of 

the cavity shape. In another paper , we extend the 

derivation to several cavities and obtain the high 

frequency behavior for a periodic cavity. In this case 
the real part of the impedance per cell is shown to L 

vary as k-j'>, in agreement with He>]fets and Kheifets‘, 

and the imaginary part varies as k , as required by 

causality. 

In rhe present paper we anaiyze the case of N 

cavities and explore the high frequency behavior for 

large N, in an effort to understand the transition to 3 

periodic structure. Not unexpectedly, the result 
depends critically on which of the limits (k + m oz 

N + a) is taker. first. 

Analysis 

The starting point for the analysis is the 

integral equation, obtained for the axial elec$,rxic field 

in a single obstacle at the beam pipe radius. 

Specifically we have 

g 

I 
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Here kc/2n is the frequency, a is the pipe radius, 

z 
,3 

= 120~ ohms is the impedance of free space, and the 

arixuthally symetric obstacle, of general shape in the 

r,z plane, extends axially frorr z = 0 to z = g at the 

pipe radius r = a. Apart from a constant and the 

factcr exp(jkz), G(z) is the axial electric field for 

r = a and 0 < z < g. 
^ 

The rrodified "pipe" kernel, Kp(u), has the form> 

jku - j bs lul/a 

?. 2nj m e 
Kp(U) = T 1 

s=l 
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5=1 

where u = z - z', b 
2 

S 
= k2a2 - j* 

s’ 
and where the last 

fern in Eq. (2.3) is obtained by averaging over 

frequency, 
1 << j 

with the dominant2contributuion coring fron 

S 
<< ka. For 1~11 << ka , the sum over s can be 

converted to an integral, leading to 

n 

KP(") z 
Cj - 1) v5 (2.4) 
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aa 

A similar analysisL for the "smoothed" high frequency 
n 

iimit of K (z', 
c 

z) also leads to the same result, namely 

0 , z’>z 

Kc(z',z) = 
(j - 1) fi 

(2.5) 

~~ , zr<z 

a r/k(z - z') 

The solution of Eq. (2.1) with the kernels in 

Eqs. (2.4) and (2.5) then yields the "smoothed" h:Gh 

frequency limit for the impedance for a single 

obstacle: 
7. 

0 (1 + j) na fi 
~ = ZoY(kJ = Fe(k), Fe(k) = 
z IkJ 

(2.6) 
G 

For several obstacles, it is easy to see that Eq. (2.1) 
can be generalized to 

: J dz; G(z,J,,) Fp(zn- Z~J + fimic(zk,zn)] = j , (2.7) 

m 

where z' m and z 
n 

denote the variables 2' and z within 

cavities m and n, and 
s 

dz' 
m is over cavity I?. The 

m 
cou-,ling between different cavities occurs through the 

pipe kernels, whereas the cavity kernels are diagonal. 

If we now 'xse the high frequency kernels in Eqs. (2.4) 

and (2.5) for the diagonal terms and Eq. (2.3) for the 

pipe kernel in the coupling terms, it is clear that th? 

only surviving contributions to the sum over m will be 

those for z' < z 
In n ' 

that is m 5 n. Specifically we 

obtain 

2n m 
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aV% 0677 

g 
dt' G,(t') = 1 r (2.8) 
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where z' = rnL t t', z = nL t t, and where we assume 
m n 

tha: we hav N identical cavities whose Centers are 
spar-ed a distance L apart. we have also approximated 

z - zz mby (n - m)L in the non-diagonal terms, 
n 

w[exp(-l/N)] = ; y, e-IN , 

n-1 

(2.15) 

corresponding to the assgnption NL >> g. The impedance 

is then 
where the exponential cut-off simulates the sum from 
n =lto Ninl xq. (2.12). For h I 1 - l/N, we find 

dt G,(t) . (2.9) 

Equation (2.8) Can be simplified by writing 

(1 - j) a fi 
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4n di fl 
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(2.10) Let us firstmconsider the limit N -f m. In this 

case we can use C j 
-2 

= l/4 to evaluate the sum over 
3 

.$=l 
3, to obtain 

(1 + j) na +G jnka' 
N ZoY(k) I t- 

L ' 
large N , (2.17) 

G 

(2.11) 
the result obtained earlier4 for a periodic structure 
If instead, we as3ume that 1 << N << ka2/L, the sum 
over 3 can be converted to an integral over j from 0 

s 
to m to give 

(2.12) 
(1 f j) ~a 6 

N Z o Y(k) % (2.18) 

6 

Our task is to soive Eq. (2.11) for y, and then use This limit corresponds to converting the sum over 3 to 

Eq. (2.12) to obtain the impedance. This can be an integral in Eq. (2.11), leading to 

fazllitaked by constr,Jcting the tran3fOrm 1 &i n-l ym 
(2.19) 

w(h) = I: h=q, r in which case use of the convolution Yn +;-- x 
b6 *~ly;Tcm=i . 

*cl -- 

theorem leads to the solution 

h 
w(b) = - 

l-h 

where 

(1 - j) hi 
1 t p(h) 

2na GE 

For large n, it is easy to show from Eq. (2.19) that 
-1 the asymptotic form of yn is 

I (2.13) 

fi 

(2.20) 

j----- 
2ka2 

h 

p(h) = ; E h'e 
2 

s=l e=1 s=l L j3 

l-h-j- 
2ka2 

The last form of Eq. (2.14) hold3 in the range 

ka2 >> Lj:. 

leading to 

(2.14) 

(1 t j) na 65% 
NZ Y(k) I (2.21) 

0 
26 

This result, which is more accurate than Eq. (2.18) for 

large N because it u3e.s ; y, rather than 

n=l 

E y, e-*jN, suggests that Eq. (2.18) can be made more 

A simple approximation to Z(k) in Eq. (2.12) for *=l 

large N can be obtained by evaluating accurate by replacing the factor gN/nL by gN/4L to 
obtain 
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(1 + j) A= fi r ml 
N ZoY(k) I (2.22) 

G 

This surp:iz3ing result predict3 that the impedance will 
vary as N once N > L/g, and that the transition to 
the pe$iodic result in Eq. (2.17) takes place when 
N > ka /L. 

Finally, we can obtain a reuslt which properly 
contains both limits by converting the 5.~17 over s in 
Eq. (2.16) to an integral over j3 with a lower limit on 

js 
chosen to retain the relation E ji2 = l/4. In 

S=l 
this way we obtain the relation 

-1 cr. 
NZ 

3 
Y(k) Z Fe(k) + Q m tan - , (2.23) 

2fi 

with 

(1 t j) a diiE 
a= 

fi ' 
(2.24) 

which can easily be s$en to give the limit in 
Eq. (2.17) a3 N $> ka /L and the limit in Eq. (2.22) 
for 1 << N << ka /L. The change to N-l in Eq. (2.23) 
is made to give the correct limit when N=l. 

We have repeated the analysis for a small 
obstacle, that is where kg - 1 even though kL >> 1. 
The entire analysis and final result in Eq. (2.23) are 
unchanged, except that Fe(k) is now the actual single 

obstacle admittance. In the case kg << 1, Gluckstern 
and Neri' have shown that 

b fjn 

J 

, (2.25) 

3 

where A is the cross sectional area of the (small) 
Fillbox. 

Discussion 

Equation (2.23) gives a result for the average 
impedance (admittance) for N equally spaced identical 
cavities at high frequency. The transitionzto the 
periodic result shows clearly when NL >> k$ . In 
addition, Eq. (2.23) predictsl,5hat, for ka .> NL the 
impedance will return to a k dependence at high ,,z 
frequency, but with a coefficient which varies as NA 
for large N, 3s given in Eq. (2.22). This has 
important implication3 where there are a large number 
of obstacles, and where convectional wisdon has up to 
now been to add impedances. We have checked this 
result by evaluating y, numerically from Eq. (2.19). 

In addition, we have allowed g/L and L to be diffefr;nt 
for each cavity and cor.firm numerically that the N 
result does not depend on delicate phase cancellations. 
Mcreover, we expect that the analysis for the 
transverse coupling impedance will be parallel, and 
therefore heiieve that our conclusions are correct at 
high frequency for multiple obstacles of any shape in a 
beam pipe of any cross section. 
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