High frequency dependence of the courling Impedance

FOR A LARGE NUMBER OF OBSTACLES
R.L. Gluckstern

Physics Department, University of Maryland, College Park, MD 20742

Introduction

We have recently derived ${ }^{2,3}$ an integral equation for the axial electric field at the pipe radius in the presence of an azimuthally symmetric cavity of arbitrary shape in a beam pipe of circular cross section. We have further shown that the local average of the coupling impedance over frequency decreases as $k^{-1 / 2}$ for high frequency, essentially independent of the cavity shape. In another paper, we extend the derivation to feveral cavities and ohtain the high frequency behavior for a periodic cavity. In this case the real part of the impedance per cell is shown to vary as $k^{-3 / 4}$, in agreement with Heifets and Kheifets ${ }^{5}$, and the imaginary part varies as k^{-1}, as required by causality

In the present paper we analyze the case of N cavities and explore the high frequency behavior for large N, in an effort to understand the transition to a periodic structure. Not unexpectedly, the result depends critically on which of the limits $(k \rightarrow \infty$ or $N \rightarrow \infty$ is taker. first.

Analysis

The starting point for the analysis is the integral equation obtained for the axial electric field in a single obstacle at the beam pipe radius. Specifically we have

$$
\begin{equation*}
\int_{0}^{g} d z^{\prime} G\left(z^{\prime}\right)\left[\hat{K}_{p}\left(z-z^{\prime}\right)+\hat{\mathrm{E}}_{\mathrm{c}}\left(z^{\prime}, z\right)\right]=j \tag{2.1}
\end{equation*}
$$

$$
\frac{Z(k)}{Z}=\frac{1}{k a^{2}} \int_{0}^{g} d z G(z)
$$

Here kc/2m is the frequercy, a is the pipe radius, $Z_{o}=120 \pi$ ohms is the impodance of free space, and the azimuthally symmetric obstacle, of general shape in the r, z plane, exterds axially from $z=0$ to $z=g$ at the pipe radius $r=a$. Apart from a constant and the factor $\exp (j k z), G(z)$ is the axial electric field for $r=a$ and $0<z<3$.

The rocified "pipe" kernel, $\hat{K}_{p}(u)$, has the form ${ }^{2}$

$$
\begin{align*}
& \hat{k}_{p}(u)=\frac{2 \pi j}{a} \sum_{s=1}^{\infty} \frac{e^{j k u}-j b_{s}|u| / a}{b_{s}} \\
& \cong-\frac{2 u j}{k a^{2}}\left\{\begin{array}{cc}
\infty \\
\sum_{s=1}^{\infty} e^{j u j_{s}^{2} / 2 k a^{2}}, & u<0
\end{array}\right\}, \tag{2,3}
\end{align*}
$$

where $u=z-z^{\prime}, b_{s}^{2}=k^{2} a^{2}-j_{s}^{2}$ and where the last form in Eq. (2.3) is obtained by averaging over frequency, with the dominant, contrihutuion coring from $1 \ll j_{s} \ll k a$. For $|u| \ll k a^{2}$, the sum over s can be converted to an integral, leading to

$$
\hat{K}_{p}(u) \cong\left\{\begin{array}{ccc}
0 & , \quad u<0 \tag{2.4}\\
\frac{(j-1) \sqrt{\pi}}{a \sqrt{k u}} & & \\
\frac{u}{} \quad &
\end{array}\right\}
$$

A similar analysis ${ }^{2}$ for the "smoothed" high frequency limit of $\hat{K}_{c}\left(z^{\prime}, z\right)$ also leads to the same result, namely

$$
K_{c}\left(z^{\prime}, z\right) \cong\left\{\begin{array}{cc}
0 & z^{\prime}>z \tag{2,5}\\
\frac{(j-1) \sqrt{\pi}}{a \sqrt{k\left(z-z^{\prime}\right)}} & , z^{\prime}<z
\end{array}\right\}
$$

The solution of Eq. (2.1) with the kernels in
Eqs. (2.4) and (2.5) then yields the "smoothed" hish frequency limit for the impedance for a single obstacle:
$\frac{Z_{0}}{Z(k)}=Z_{o} Y(k)=E_{o}(k), E_{o}(k)=\frac{(1+j) \pi a \sqrt{\pi k}}{\sqrt{g}}$.

For several obstacles, it is easy to see that Eq. (2.1) can be generalized to
$\sum_{m} \int_{m} d z_{m}^{\prime} G\left(z_{m}^{\prime}\right)\left[\hat{K}_{p}\left(z_{n}-z_{m}^{\prime}\right)+\delta_{m a n} \hat{k}_{c}\left(z_{m}^{\prime}, z_{n}\right)\right]=j,(2.7)$
where z_{m}^{\prime} and z_{n} denote the variables z^{\prime} and z within cavities m and n, and $\int_{m} d z_{m}^{\prime}$ is over cavity m. Tho coupling between different cavities occurs throligh the pipe kernels, whereas the cavity kernels are diagonal. If we now use the high frequency kernels in Eqs. (2.4) and (2.5) for the diagonal terms and Eq. (2.3) for the pipe kernel in the coupling terms, it is clear that the only surviving contributions to the sum over m will be those for $z_{m}^{\prime}<z_{n}$, that is $m \leq n$. Specificaliy we obtain

$$
\frac{2(1+j) \sqrt{\pi}}{a \sqrt{k}} \int_{0}^{t} \frac{d t^{\prime} G_{n}\left(t^{\prime}\right)}{\sqrt{t-t^{\prime}}}+
$$

$+\frac{2 \pi}{k a^{2}} \sum_{s=1}^{\infty} \sum_{m=1}^{n-1} \exp \left(\frac{j(n-m) L j_{s}^{2}}{2 k a^{2}}\right) \int_{0}^{g} d t^{\prime} G_{m}\left(t^{\prime}\right)=1$,
where $z_{m}^{\prime}=m L+t^{\prime}, z_{n}=n L+t_{t}$ and where we assume that we hav N identical cavities whose centers are spaced a distance l apart. We have also approximated $z_{n}-z_{m}^{\prime}$ by $(n-m) L$ in the non-diagonal terms,
corresponding to the assumption NL >> g. The impedance is then

$$
\begin{align*}
& \frac{2(k)}{z_{0}}=\frac{1}{k^{2}} \sum_{m=1}^{N} \int_{0}^{g} d t G_{m}(t) \tag{2.9}\\
& \text { Equation }(2.8) \text { can be simplified by writing }
\end{align*}
$$

$$
\begin{equation*}
G_{n}\left(t^{\prime}\right)=\frac{(1-j) a \sqrt{k}}{4 \pi \sqrt{\pi} \sqrt{t^{\prime}}} y_{n} \tag{2.10}
\end{equation*}
$$

leading to
$y_{n}+\frac{(1-j) \sqrt{g}}{a \sqrt{\pi k}} \sum_{s=1}^{\infty} \sum_{m=1}^{n-1} y_{m} \exp \left(\frac{j(n-m) L j_{s}^{2}}{2 k a^{2}}\right)=1$
ar.d

$$
\begin{equation*}
\frac{z(k)}{z_{0}}=\frac{(1-j) \sqrt{g}}{2 \pi a \sqrt{\pi k}} \sum_{n=1}^{N} y_{n} \tag{2.12}
\end{equation*}
$$

Our task is to solve Eq. (2.11) for y_{n} and then use Eq. (2.12) to obtain the impedance. This can be facilitated by constructing the transform
$w(h)=\sum_{n=1}^{\infty} n^{n} y_{n}$, in which case use of the convolution theorem leads to the solution

$$
\begin{equation*}
w(h .)=\frac{h}{1-h}\left[1+\frac{(1-j) \sqrt{g}}{2 \pi a \sqrt{\pi k}} p(h)\right]^{-1}, \tag{2.13}
\end{equation*}
$$

where

$$
P(h)=\sum_{s=1}^{\infty} \sum_{\ell=1}^{\infty} h^{\ell} e^{j \frac{\ell L j_{s}^{2}}{2 k a^{2}} \cong \sum_{s-1}^{\infty} \frac{h}{1-h-j \frac{L j_{s}^{2}}{2 k a^{2}}} \cdot(2.14)}
$$

The last form of Eq. (2.14) holds in the range $k a^{2} \gg L j_{s}^{2}$.

A simple approximation to $Z(k)$ in Eq. (2.12) fok large N can be obtained by evaluating

$$
\begin{equation*}
w[\exp (-1 / N)]=\sum_{n=1}^{\infty} y_{n} e^{-n / N} \tag{2.15}
\end{equation*}
$$

where the exponential cut-off simulates the sum from $\mathrm{n}=1$ to N in Eq. (2.12). For $\mathrm{h} \cong 1-1 / \mathrm{N}$, we find

$$
w\left(1-\frac{1}{N}\right) \cong N\left[1+\frac{(1-j) \sqrt{g}}{\sqrt{\pi k a^{2}}} \sum_{s=1}^{\infty} \frac{1}{\frac{1}{N}-j \frac{L j_{s}^{2}}{2 k a^{2}}}\right]^{-1} \cdot(2.16)
$$

Let us first ${ }_{\infty}$ consider the limit $N \rightarrow \infty$. In this case we can use $\sum_{j}^{\infty} j_{s}^{-2}=1 / 4$ to evaluate the sum over $s=1$
s, to obtain

$$
\begin{equation*}
N Z_{o} Y(k) \cong \frac{(1+j) \pi a \sqrt{\pi k}}{\sqrt{g}}+\frac{j \pi k a^{2}}{L} \text {, large } N \tag{2.17}
\end{equation*}
$$

the result obtained earlier ${ }^{4}$ for a periodic structure. If instead, we assume that $1 \ll N \ll \mathrm{ka}^{2} / \mathrm{L}$, the sum over s can be converted to an integral over j_{s} from 0 to ∞ to give

$$
\begin{equation*}
N Z_{\circ} Y(k) \cong \frac{(1+j) \pi a \sqrt{\pi k}}{\sqrt{g}}\left[1+\frac{\sqrt{g \mathrm{~N}}}{\sqrt{\pi \mathrm{~L}}}\right] . \tag{2.18}
\end{equation*}
$$

This limit corresponds to converting the sum over s to an integral in Eq. (2.11), leading to

$$
\begin{equation*}
y_{n}+\frac{1}{\pi} \frac{\sqrt{g}}{\sqrt{L}} \sum_{m=1}^{n-1} \frac{y_{m}}{\sqrt{n-m}}=1 \tag{2.19}
\end{equation*}
$$

For large n, it is easy to show from Eq. (2.19) that the asymptotic form of y_{n} is

$$
\begin{equation*}
y_{n} \rightarrow \frac{\sqrt{L}}{\sqrt{g n}} \tag{2.20}
\end{equation*}
$$

leading to

$$
\begin{equation*}
N Z_{0} Y(k) \cong \frac{(1+j) \pi a \sqrt{\pi N k}}{2 \sqrt{L}} \tag{2.21}
\end{equation*}
$$

This result, which is more accurate than Eq. (2.18) for large N because it uses $\sum^{N} y_{n}$ rather than
$\sum_{n}^{\infty} y_{n} e^{-n / N}$, suggests that Eq. (2.18) can be made more $n=1$
accurate by replacing the factor $g N / \pi L$ by $g N / 4 L$ to obtain
$N Z_{O} Y(k) \cong \frac{(1+j) \pi a \sqrt{\pi k}}{\sqrt{g}}\left[1+\frac{\sqrt{g N}}{2 \sqrt{L}}\right]$, large $k a$.

This surprising result predicts that the impedance will vary as $N^{1 / 2}$ once $N>L / g$, and that the transition to the periodic result in Eq. (2.17) takes place when $\mathrm{N}>\mathrm{ka}^{2} / \mathrm{L}$.

Einally, we can obtain a reusit which properly contains both limits by converting the sum over s in Eq. (2.16) to an integral over j_{s} with a lower limit on j_{s} chosen to retain the relation $\sum_{s=1}^{\infty} j_{s}^{-2}=1 / 4$. In this way we obtain the relation

$$
\begin{equation*}
N Z_{o} Y(k) \cong F_{o}(k)+\alpha \sqrt{N-1} \tan ^{-1} \frac{\alpha}{2 \sqrt{N}} \text {. } \tag{2.23}
\end{equation*}
$$

with

$$
\alpha-\frac{(1+j) a \sqrt{\pi k}}{\sqrt{L}}
$$

which can easily be seen to give the limit in Eq. (2.17) as $\mathrm{N} \gg \mathrm{ka}^{2} / \mathrm{L}$ and the limit in Eq. (2.22) for $1 \ll N \ll k a^{2} / L$. The change to $N-1$ in Eq. (2.23) is made to give the correct limit when $N=1$.

We have repeated the analysis for a small

obstacle, that is where $\mathrm{kg} \sim 1$ even thaugh $\mathrm{kL} \gg 1$. The entire analysis and final result in Eq. (2.23) are unchanged, except that $F_{0}(k)$ is now the actual single obstacle ${ }_{5}$ admittance. In the case $\mathrm{kg} \ll 1$, Gluckstern and Neri ${ }^{6}$ have shown that
$E_{0}(k) \cong 2 \pi k a\left[-\frac{j}{k^{2} \Delta}+\sum_{s=1}^{\infty} \frac{e^{-j b} s / a}{b_{s}}+j \frac{2 \ln 2}{\pi}\right],(2.25)$
where Δ is the cross sectional area of the (small) pillbos.

Discussion

Equation (2.23) gives a result for the average impedance (admittance) for N equally spaced identical cavities at high frequency. The transition to the periodic result shows clearly when NL $\gg \mathrm{ka}^{2}$. In addition, Eq. (2.23) predicts that, for $\mathrm{ka}^{2} \gg \mathrm{NL}$ the impedance will return to a $k^{-1 / 2}$ dependence at high frequency, but with a coefficient which varies as $\mathrm{N}^{1 / 2}$ for large N, as given in Eq. (2.22). This has important implications where there are a large number of obstacles, and where conventional wisdom has up to now been to add impedances. We have checked this result by evaluating y_{n} numerically from Eq. (2.19). In addition, we have allowed g / L and L to be different for each cavity and confirm numerically that the N result does not depend on delicate phase cancellations. Moreover, we expect that the analysis for the transverse colpling impedance will be parallel, and therefore believe that our conclusions are correct at high frequency for multiple obstacles of any shape in a beam pipe of any cross section.

I would like to thank Filippo Neri for several helpful conversations, and John Diamond for performing the numerical calculations.

References

1. Work supported by the Department of Energy.
2. R.L. Gluckstern, High Frequency Behavior of the Longitudinal Coupling Impedance for a Cavity of Arbitrary Shape, to be published in Physical Review D.
3. R.I. Gluckstern and B. Zotter, The Coupling Impedance of Asymmetric Cavities, CERN-LEP-613, July 1988.
4. R.L. Gluckstern, Longitudinal Impedance of a Periodic Structure at High Frequency, to be published in Physical Review D.
5. S.A. Heifets and S.A. Kheifets, High Frequency Limit of the Longitudinal Impedance of an Array of Cavities, SLAC-PUB-4625 (1988).
6. R.L. Gluckstern and F. Neri, Longitudinal Coupling Impedance of a Small Obstacle, companion paper, this Conference; see also R.L. Gluckstern, Longitudinal Coupling Impedance for Several Small Pillboxes, CERN Report LEP-TH/88-39, June 1988.
