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Abstract 
The aim of this paper is to study a bunch rotation under a 

longitudinal snace charge effect. Assuming the longitudinal space 
charge force to be line&, we can get some-analytical expressibns, 
which would be useful for understanding the compression of a 
bunch with a high current. 

I. Introduction 
The method of bunch rotation will be used for the 1 GeV 

Compressor/Stretcher Ring of the JHP (the Japanese Hadron 
Project) in order to compress a long proton bunch of 200 nsec up to 
a few tens nsec. In this method, high RF voltage is suddenly 
applied to rotate the bunch in the longitudinal phase space (bunch 
length = l/v#2, whereas = 1/V&4 for adiabatic compression). 
With the medium enerev of 1 GeV. the Desk current in the bunch 
would be more than 16A, so that the spice charge effect becomes 
significant. 

Computer simulations have already been made for the 
creation of a short proton pulse by the bunch rotation method, taking 
into account the strong effect of longitudinal space charge [l, 21. 
However, if we get simple formulae to evaluate the space charge 
effect, these formulae will not only serve as a guide line for the time- 
consuming computer simulation, but also help understand the 
general properties on the space charge effect. 

In this paper, presented are some analytical formulae to 
estimate the bunch rotation with a longitudinal space charge effect. 
To obtain the formulae, we use a simple model, in which the space 
charge force is assumed to be linear. First we will give an 
elementary derivation of the envelope equation including a self- 
force. Using the equation we will then obtain some formulae, and 
finally present numerical examples. However, any transverse space 
charge effect, probably even stronger than the longitudinal one for 
the JHP, is not considered in this paper. 

II. Envelope Equation 
In this section, we derive a general envelope equation with a 

self-force. Here we assume that the external force acting on a 
particle as well as the self-force is linear. Then the equation of 
motion of a particle in an ensemble (i. e., a beam) may be given as, 

.d’+ Kx =fla) x , (1) 
where the right hand side represents the linear self-force, and f(a) is 
its coefficient with a as the envelope of the beam. In the same 
manner as the treatment of betatron oscillation, we would write x as 
x = wei’+. Then from Eq. (1) we have the amplitude equation of the 
particle, 

2 

0.Y + Km- 52 =f(a)o , 

fo3 
(2) 

where ~0 = o*\ir’ = constant, and this may be called emittance. 
Putting o = f.a with f being a constant, we obtain the following 
envelope equation; 7 

n”+m~a-3LPO=0 ^ ^ 1 
a5 aL 

where E&, namely the emittance of a particle on the envelope, is 
replaced by ~0, and we put K = ~02, f(a) = po/a3. From Eq. (3), we 
can immediately get the first integral of motion, 

.2 22 
E.-+- ml9 + %?- + fi = E (= constant) . 

2 2 k2 a (4) 

The E in Eq. (4) may be expressed by the initial condition. We can 
also define the potential energy U(a) as, 

2 2 
U(a)=* +G-+!s II - . 

L 2aL u 

The envelope equation thus becomes equivalent to the equation of 
motion for a potential in classical dynamics. The second and third 
terms in Eq. (5) may represent a repulsive potential due to angular 
momentum and a coulomb potential in classical dynamics. From 

Eq. (5), the time elapsed from a0 to a[ (the lower limit of allowable 
a) is given by, 

(6) 

III. Envelope Equation with Space Charge Effect 
Here we study the longitudinal envelope equation only with a 

linear RF voltage, so that the amplitude of phase oscillation must be 
actually small for the equation to be valid. Since the longitudinal 
force of space charge is also assumed to be linear, the density 
distribution must be parabolic. Hence the voltage induced by direct 
space charge effect for perfectly conducting circular vacuum 
chamber is given as. 

v s.c, = 3n.a h21b L = 3~ 
2Br2 qy3 

(7) 
g=1+21k 

! a ’ 

where b is the radius of the vacuum chamber, a the beam radius, & 
the characteristic impedance of vacuum, (Z/j/n) the longitudinal 
coupling impedance due only to the direct space charge effect, cp the 
RF phase and w, the half bunch length in RF phase, and the others 
have the usual meanings. Using the Eq. (7), we can obtain the 
envelope equation with space charge effect as follows; 

~+a-<-P=o (8) 
a3 a2 

where we put a = ‘p and the derivative is taken with respect to w,t 
with ws the synchrotron frequency. The constants c2 and p are, 

(9) 

where AE/E and A; are the half energy spread and half phase width 
of the beam, and the others are the usual meanings. The first 
constant is a dimensionless longitudinal emittance and the second 
one is a dimensionless space charge effect. The envelope equation 
obtained here is equivalent to the ones given in Refs. 2 and 3. 

Some Formulae 
In the following, a0 denotes the initial value of a, and for 

brevity a~’ (the initial value of a’) is assumed to be zero. 
minimum h&f Dulse width and (AEIE)m without suace charge 

ii3.L 
The minimum of the half pulse width attained by bunch 

rotation is, 

(10) 

where R is 2n times the revolution frequency of the ring, and the 
subscripts i and f denote the initial and final values, respectively. At 
the time when the minimum is reached, the energy spread becomes, 

(W&I = (11) 

where Ti is the initial valie of halt p&e width. . . 
@t-se wl-lhalfwldthi wrrh Space c- 

As the equation of E = U(a) is a fourth order with respect to 
a, the exact value of af may be obtained by the Ferrari’s method 
which is suitable for numerical calculation. Yet certain approximate 
expressions would often be more useful to clarify the degree of the 
space charge effect. The approximate formula of af may be obtained 
by either iterative or averaging method (see Appendix I). An 
iterative method gives an expression of the second order 
approximation with respect to p, 

,D2 (ao-4 
uf=a1+~~+n,)+r(L2D+a1)3a~a, ’ (12) 
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where al is af without space charge effect. 
T 

;he time taken to compress the pulse to its minimum can be 
numerically calculated using Eq. (6); for example, when talc 
by the Mori-Takahashi Method (a double exponential meth 
gives an extremely accurate value. On the other hand, 
compressing time can be analytically expressed as, 

w,yT = X(k) sn(FN CM>@ 
i(a-cN-4 dn(F,k? i 

ZF 

2K(kWk1 - 
where a, b, e and d are the roots of E = i)(a)‘in the’ descending 
order, and k is given by, 

,z=(~-@(c-4 
(a-C)(b-d) 1 rZ=1-k2. 

The K(k) is the complete elliptic integral of the first kind, K(k) = 
K(k), and F the incomplete elliptic integral of the first kind [4], 

F= o 

J 

d&. ~~o=taan-’ 5. (15) 
4- 

And sn, cn and dn are the Jacobi’s elliptic functions, and Z is the 
Jacobi’s Zeta function. In spite of its complicate form, Eq. (13) can 
be evaluated easily and fast (see Appendix II). 

Yet the formula of the first order approximation with respect 
to p may be useful and is given by (see Appendix I), 

w,T=; 1+pI, 
I I 4nB 

I= 
B(A ,“B,Ip 

[A K(k) - (A + B) E(k)] 
(16) 

where E(k) is the’complete elliptic integral of the second kind, and 
A. B and k are. 

A =@12+~21fJ02 ) E= ao2 - E 2/ao2 
2 2 

, k”=&. (17) 

At allowable time lap for the beam extra&q 
We may use 10% growth time of the beam pulse from its 

minimum to estimate the allowance for the time lag at extraction. 
The 10% growth time AT may be evaluated as, r 1 

q&=Zq,/&(3 , &(af)=++$3a~i, (18) 

with Ada = 10%. Here-g(a) is the square of da/dt.- 
AT com.pression time 1% 

In compressing the beam pulse, the nonlinearity of RF 
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Appendix I. Averaging Method for T and ar 
We apply here an averaging method to the envelope equation 

to find out approximate solutinns for T and ar, First we consider the 
case of p=o. By putting a = <p in the same manner as Courant- 
Snyder’s treatment for betatron oscillation, the squ‘are of a becomes, 

voltage would give rise to a time lag of compressing time for 
the tail of the beam distribution. If there were no space charge 1600 

effect, the compression time lag AT can be approximately 
estimated as, 

AT a2 
-z---. 
T 16 

(19) 1400 

Even with space charge effect, this expression may still be 1200 __-- _-x- -5 
valid, because the space charge effect would not be so strong 
at the tail where the particle density is low and then its gradient 
would be gentle. 1000 

Qualitative but useful fomrulae, which we can obtain 7 
from the energy expression of Eq. (4), are omitted from this y 800 
paper. i 

IV. Numerical Examples 
5 600 

This section presents some numerical examples for the ‘i 
JHP. The parameters taken here are the kinetic energy of _” 4oo 
proton El, = 1 GeV, lnl = 0.17597, b/a = 2, the revolution g 
frequency = 1.5 MHz. Then Z/,/n becomes 120.375 R. In all 2w 
figures presented here, the harmonic number h = 1 is taken to 
avoid the effect of nonlinearity of RF voltage. The initial pulse 0 

0 2 4 6 a 10 
0 2 4 6 a 10 

width (full width) is 200 nsec for Figs. 1 to 6 and l(x) nsec for beam current [A] 

Figs. 7 to 10. The RF voltage is fixed at 300 kV except Figs. beam c”rre”t [A] 

5 and 6. The approximate formulae in Sec. III give good Fig. 3 Final Maximum Space Fig. 4 Compressing Time and 

agreement to the values of these examples. Charge Voltage in Beam 10% Growth Time versus 
versus Beam Current Beam Current 
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u2 = EP= A + B cm 2% (% =a.& (1-l) 
where a’~ = 0 is assumed, and A and B are those oi Eq. (17). For p 
# 0, then, the expression for a may be written as, 

u2 = A(%) + B(0) cos (2% + 24$(e)), U-2) 
where A(B), B(0) ~(9) are slowly varying variables. As there are 
three independent variables, we must Impose other two constraints 
to obtain the solution. For such constraints, we may take, 

flu’= -B(B) sin (2e+ 24+3)) ) 

A(O)2 -B(O)* = E’. 
(l-3) 

With Eqs. (I-2) and (I-3), we can obtain, 
A’ 
2 

= pB sin 0, E=--JJ~ 0 
&3 2 

PA: , 
b3 

(I-41 . , 
Bv’=-+B+Acos%). 

2f2 
Up until here no approximation is made. Now we may average Eq. 
(I-4) with respect to 8. The average of cp’ over a cycle of oscillation 
is then given by, 

cp=-P B + A cos u du , 
(I-5) 

477B (A + B cos up/2 

with A and B being constant. Hence the T, one fourth of a period, 
can be obtained as in Eq. (16). In the same way, the changes in A 
and B during T are obtained as, 

I 

II 
&‘j =-Bp sin @d@ 

2 e (A + B cos $)p’2 

4 
(I-6) = 

(ag+~~)ag~~’ 
Then af for p # 0 becomes, 

af/al= 1 + P 
(ag+4agalf 

(I-7) 

This expression is the same as the first order term for p in Eq. (12). 

Appendix II Easy and Fast Calculation of Elliptic 
Functions 

The calculation algorithm described here is very simple and 
fast and yet very accurate. This is given in Refs. 4 and 5, but for 
convenience cited here. 
Step 1: set k (+ 1) and cpe, and put S=k* and Z=O. Step 2: ac = 1, bu 
= k’ = dm Step 3: calculate next arithmetic and geometric 
averages, 

a, = (an-l + b,.$2 , bn = la, - tb, - I , 

cn=(an.l-b”.l)/:!, S=S+2”cn2. 
Step 4: 

Acp = tan-’ fi tam&t , cpn = (~a-1 + Arp , Z = Z + cnsincpn 
r 

b 

an-l I 
Step 5: if c, is not small enough, go to Step 3. 
Derail and Note for Srep 4: any computer may turn out A’p in 
-x/2 < AT i n/2. Put A’p = Acp + E with E a very small number 
to avoid numerical error at specific values of cpo and k. If A’p < 
0 then put A?irp = AT + X, and further put Acp = A’p + am, where 
m = integral part of on-l/~. Moreover, with ~1 (9) a small 
number, if k(cpn.1 - AT) > 7c/2 + ~1 then Acp = A’p f T[. 

In almost all cases, several iterations, often less than 
five iterations, are enough to converge. With the N-th iteration 
converged, the elliptic integrals and functions are then given as 
follows; 

K(k) = &- E(k) = (1 - ; S) K(k), F(cpo) = (PN, z( cpo) = z . 
N 2*aN 

If necessary, the incomplete elliptic function of the second 
kind E(u) can be calculated using a relation, 

Z(u) = E(u) - K(k) E(k) F(u) 

If cpu is used instead of F, the Jacobi’s elliptic functions 
reduce to elementary functions, 
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Fig. 5 Final Pulse Width 
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