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1 Summary

In order to overcome the limitations of the broad band resonator
impedance model, two different models are proposed here which
have nmtore realistic propertics at both very high and very low
frequencies.  For each model we specify two types, which arc
proportional to cither w™'/2 or w=¥? at high Trequencics, At
low frequencies, the real part of the first impedance model rises
quadratically or - for a special choice ol the parameters - with the
fourth power of frequency. In the second model it is identically

[}

zero np to a chosen "cut-ofl frequency™, and thereby vields the
very fast decrease of Lhe loss factor with bunch length which is
always found by direct solution of Maxwell’s equations for Toss-
less structures. Although not quite as simple as the broad-hand
resonatar, both models have impedances and Green functiouns
which may be expressed by analytic functions and depend only
on few parameters. Thus they should lead to improved estimates
ol heam stability limitations in partlicle accelerators and storage
rings.

2 Introduction

The stability of charged particle beams in high energy aceel-
erators or storage rings depeonds critically on the shape and
the clectro-magnetic propertics of all structures surronnding the
beam. Their clfect can be deseribed either by a wake paoten-
tial, which is usually a quite irregular function of the distance
hehind the exciting particles, or by an impedance, which is gen-
erally a rather complicated Tunction of frequency, with a laige
number of peaks due to many resonant modes in all cavity-like
nhjects, However, for the (single turn) stability of a short bunch,
one needs consider only the wake potential over the length of
the bunch.  Such a short range wake is caguivalent 1o a very
Iow resolution in the Irequency domaing e, sharp peaks of the
impedance Tunction will be smceared out.

This reduced frequency resolution of a short bunch has been
the main justification for using the "broad-band resonator”
model [1]: the actnal impedance function is replaced by that
of a single resonant circuit with a low quality Tactor. ‘The whole
frequency behaviour is then described with only three param-
cters: the resonant frequency, the shunt iimpedance, and the
quality Tactor. However, it also has a number of limitations:

a) its real parl falls off rather steeply as w™2 at high frequen-
vies, while the asymplotic behaviour should be only = '/? or a

single cavity with infinite side tubes(2], or w=?

for a periodic
structure[3]. This fact was only ol wminer importance for bunch
lengths of many centimeters, and impedances due Lo large cavi-
ties or cross-section variations. However, for very short bunches
and/or for strnctures with high resonant frequencies (e.g. sinall
steps or hellows) this difference becomes maore important.

b) at low frequencies, the real part incieases as o?, while it
should remain zero up to the lowest resonance Tor a lossless stine-
ture. TPor Gaussian hunches the Toss faclor should vanish expo-
nentially with bunch length, but decreases only as o7 iu the

resonator model.

3 The Broad-band Resonator Iimpedance

The expression for the complex imperdance of a parallel resonator
is usnally written

I
1 jQ(w/w, — w, fw)

where R s the shant impedance, f, = w, {27 the resonant fre-

Z{w) =

(1)

quency, and @ the gquality faclor. 1 is possible to split the RHS
of Tiq.(1) inte two inverse lincar functions by partial fraction
decomposition

2wy = 15 (S - ) (2)

TS \w—wy w—wy

where § = \/ﬁ};-j, and wy o = 5’5 (7 S) arc the poles of the
impedance function. For > 1/2, §is real and hence wy = —wj.

In this [oem, the resouator impedance permits the explict
cvaluation of many integrals, often by using the residue theo-
rem. As an exanple, we show here the calenlation of the delta-
function wake potential or "Green Tunction”: In [ront of the
patticle (v < 0), the exponential factor requires that the inic-
gration contour be closed in the lower hall-plane. Since there are
nn poles there, the function vanishes. Behind the source (7 > 0),
one must integrate in the upper hall-plane to find

ZI; [m dw Z(w) exp (JwT)
n . .
= 3 lwyexp (JwiT) — wy exp (Jw2T)]
2n .
= *S,—Hr [w) exp(juwiT)) 8))
where the last line holds for @ > 1/2. This expression can also
be written in purely real form

R I,
((r)= % exp(~2) |cos{Sz2) - :S:sm(Sz) (1)
where 2 w,7/20Q. For @ < 1/2, one should replace S by

S = \/l - ]J; and the circular Tunclions by hyperbolic ones.

For @ = 1/2, hoth expressions become indeterminate and must
he replaced by

((r) = 2w, I(cxp(—w,.r) [V —w,]. (%)

The wake potential of a bunch can then be found by convelution
ol its fine density A with the Green function. Tor a Gaussian
binch with RMS length o one gets

wy o JT

7.'2
W(r) = ': oxp(=gg)Relwiw(s)] 2= Vi oz (%)

where w(z2) is the "camplex error function™[5).
The loss Factor can be caleulated fromn the integrals
g

Ho) = 5 / o % (w)h(w) ﬁ’ drG(r)a(r)  (7)
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where h(w) = 5«7(w) is the spectral power density, and a(7) the
auto-corrclation Tunction of the line density. For a Gaussian

hunch in a resonator, the loss factor becomes
n
k(o) = —;;Rrr[w,w(w,rr)]. (R)

Asymptotically, it depends on both I and €} separately, and not
ouly on R/Q asin the transverse case (], and thus the resonator
parameters cannot be determined uniquely.

4 The First Improved Impedance Model

The real and imaginary parts of a camplex impedance are re-
Jated by a [ilbert transformation. Therefore they are the cosine
and sine transforms of a single, real " Green™ Tunction which van-
ishes for 7 < 0. Not inany funclions arc known (o have cxplicit
analytic sine and cosine transflorms, and if one farthermore looks
for a parlicular asymptotic behavior, the choice is restricted (o
very few.

Impednnce Model 1A

The first candidate]6], with an asymptotic frequency dependence
of the cosine transform approaching w™Y? is the complementary
crror function of the square root of y = wyr. Fory >0

G(y) = erfe(Vy) (9)

with the Fouricr transforins
1 [ P
20V u |

o 2

r PATR'AR T |

I

j dy G(y) cos(xy)
0

1

/ dy G(y) sin(zy)
0

where

w
r=—, u=vz2 4 1.

W

()

Any realistic impedance must have a vanishing real part at,
zevo frequency since a uniform, coasting beamn does not lose
energy to the vacuum chamber walls,
impedance which just cancels the real part at zero frequency, but

One can thus add an

falls off faster at high frequencics. We may take c.g. resonator
impedance, since its real part decreases asymplotically as w2,
The Tull expression for the impedance and Green function
arc shown in Table I, The frequencies wy, wy, and the 'shunt
impedance’ R form three parameters which may be chosen to
it the impedance of any particular structure. T'or very high fre-
aquencies, the asymptotic behaviour of this impedance model is
given by
2 —

ReZ(z) x ™37, ImZ(x) «

(12)
while at low frequencies one obtains the approximations

1 5., 1 3
RcZ(m)cx((—';-—g)m, lmZ(.r)oc((—;—]).r

(13)

In order to have a positive definite real part of the inpedance,
one has to take a? < 8/5, which also yiclds a positive imaginary
part (inductive) at low frequencies. It becomes negalive (capaci-
tive) at high frequencics just as for the resonator impedance. For
n? = R[5, the real impedance increases as w' al low frequencies
a shown in Fig.1. This choice results in a faster decrease of the
loss Tactor with bunch length (o o).
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Intpedance Model 1B

For an inverse square-root dependence of the real part of the
impedance al high frequencies, a suitable pair of Fourier trans-
forms can be lound with the Green Tunction

Gy) = exp(-y)/Vy

With v = \/;7 4+ b as before, the Ltransforms can be writlen
i)

_ \/E\/u{» 1
- 2 "
1yu—l

1y G (1) sin(x
/ dy G(y) sin(zy) a—

(11)

/ dy G (y) cos(xy)

Sy

I

(15)

Agnin one has to add a term Lo make the real part of the
impedance vanish at zero frequency,. With 7 = wi/w and
@ = wyfuy, this yvields the complex impedance and the cor-
responding, Green funclion shown in Table 1. At low frequencics,
the normalized impedance can be approximated by the expres-
sions

ReZ(r) (J; - ‘-})a:"’, ImZ(r) « (i - l)r
a 8 a 2

(16)

In order to guarantee a positive real part, one now has to take
o? < &/3. The loss factor for this impedance model can be
caleulated Tram the anto-correlation Tunction. For a Gaussian
hunch, one obtains integrals which can be expressed explicitly by
the "parabolic cylinder function™ D_y/5. Unfortunately, these
Tunctions are not standard computer library routines. Iowever,
we could derive a relation to modified Bessel functions of order
1/ 4 which is not given in standard textbooks:

.77_' .’L'?
D_oipa(r) = \/é;l<‘/‘(7)

This makes numerical evaluation casier, and simplifics the

(17)

derivalion of approximations for the loss lactor [8].

5 Second Improved Impedance Model

JFor any impedance whose real part increases as w?® at low fre-
quencies, the loss faclor depends asymptotically as o~ (1) oy
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Figure 2: Real and Tmaginary Parts of hnpedance

the bunch length. Thus no power law can lead Lo the fast, expo-
nential fall-off found for Gaussian bunches with computer codes
integrating Maxwell's equations [7]. Tn ovder to abiain such a de-
crease, it is necessary Lhat the real part of the impedance remain
zero up to a "cut-off frequency wi. We have constructed Lwo
impedance models with this property, whose real parts decrease

-8/2

as cither w or w2 ai high frequencies.

Impedance Model 2A

In this model, the real part of the impedance vanishes for x| < 1,
while for jz| > 1 it is proportional io

ReZ(x) = i[l—;rz—ij (18)

where = w/fwy. The real parl has a maximum for » = 4/},

and decreases with w™%/?

at high frequencies. The corresponding
imaginary part can again be obtained by Hilbert transformation,

and is listed in Table L. Tor low frequencics, it is proportional

to 2r /3, and has a sharp peak at x=1. For high frequencies,
it tends Lo — /2. The corresponding normalized Green Function
G = GJw N is given by

=2 [Ty V-1 19
() = "'/l e~ cos(xy) (19)
where y = wy 7, leading to integrals over I'resnel Tunctions. For
computer evaluation, this is of no advaniage over direct numer-
ical inlegration, in particular since the integrand converges rea-
sonably well. Also the normalized loss faclor

k() = ] / dr -L;——l cxp(—~a’z?) (20)
] T

m

must be obtained by numerical integration. The result shows
the asymplotically exponential decrease Ly pical for lossless struc-

turcs.,

Impedance Model 2B

One can eonstruct a similar model for an impedance whose real
part decreases asymptotically as the inverse square root of fre-
quency. We simply replace 22 by |z] in Eq.18. This Tunction
has a maximnm value of Z = 1/2 for z = 2. The corresponding
imaginary patt is again found with the itbert transformation,
and shown in Table 1. At low frequencies, the imaginary part
is inductive and peaks sharply al = = 1. It decreases rapidly,
changes sign, and finally approaches zero logarithmically at high
frequencies. 'The corresponding normalized Green function can
be evaluated in (ering of Fresnel integrals S(x) and C(x) and is
given in Table I. However, the loss faclor of a Gaussian beam
must again be obtained hy numerical integration.
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