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'I‘he physical mechanism responsible for the 
',11x:> charge limiting current in a wave cavity and 
il: 1~~-~~bence of electromagnetic fields is 
.i&:li-essed. It is found that the ponderomotive 
-,n-rgy alters radically the build up of beam 
-1ectrostatic energy. As a consequence, the 
limiting current can be greatly decreased or 
ent:nnced depending on whether the ponderomotive 
rnezgy is positive or negative, respectively. This 
effect could be observed experimentally and it is 
z.nticipated to have important practical 
coiisequences for present high-current particle beam 
~~~..~"~'-iI~ents. 

'the propagation of high-current particle beams 
ii> <+ \;ave cavity or drift tube and in presence of 
elrytromagnetic fields is a basic theoretical 
~~ro~lern in physics. The latest revival in its 
ttleort';ical interest reflects the recent 
t,sperilfental advan es 

5 
in high-power free-electron 

3 I a b e r s , gyrotrons , collective-ion accelerations , 
and so on. A basic phenomena occurring in these 
csprrilrents is that as the beam current is 
irlct-L>ased, an electrostatic potential depression 
brlilds up due to the beam's self space charge field 
.~:'ii 3s a result, the beam current cannot be 
ill~~1--nscd beyond a certain amount. This is the 
lilllit-ing current of the cavity and it is a 
tlleoretical limit on the current 

2 
and hence on the 

;""d" , in devices like gyrotrons The problem of 
li.riting current of ptrticle beams in a cavity has 
;,een addressed before , but not taking into account 
:lle presence of electromagnetic 
cavity. However, 

fieldslfy,t:;e 
in these experiments 

F;irticle beam does propagate in the presence of 
c,lrctrorragnetic fields which changes fundamentally 
:llj, TIhysical situation. The oscillating 
i l(~c,tronsgnetic field cjeates a quasistatic 
1~01irli roltiotive potential which affects the particle 
/I 0 t i 011 and hence, the limiting current. The 
static magnetic field, on the other hand, 
introc'uces resonances due to the coupling of the 
Gyro:"otion with the particle motion in the 
rlectromngnetic wave field. Again, the limiting 
c)lrrent calculations should reflect this 
0:ccrrence. The inclusion of all these issues 
rzsL.lts in a more complete and realistic treatment 
of the limiting current problem applicable to 
prcirnt experimental situations. 

'~'he practica13consequence of this work is that 
< :~ I".I-inentalists will have at hand the right 
behaviour and value of the limiting current for 
their experiments, which, typically, 

F; 
an be 

considerably different from the value found 
without considering the electromagnetic fields in 
the cavity. We find that the combined effects 
resulting from the oscillating electromagnetic 
field and the static magnetic field can greatly 
decrease or enhance the limiting current depending 
on whether the ponderomotive energy is positive or 
:>i:cntive , respectively. Our calculations show that 
we can obtain, say, an order of magnitude reduction 

in the limiting current of a 1OOkV relativistic 
electron beam using only modest electro-magnetic 
fields, and consequently, a decrease in power 
produced by, say, a gyrotron. Physically, this 
occurs because a positive ponderomotive energy of 
solne appropriate cavity mode enhances the beam 
space charge electrostatic energy. Alternatively, 
WC can think that the positive ponderomotive energy 
reduces the potential energy associated with the 
beam accelerating system. This is reflected as a 
decrease in the beam kinetic energy with a 
consequent decrease in the current that is able to 
propagate through the cavity. 

We will first derive the limiting current as a 
function of beam energy, waveguide field and the 
external magnetic field for solid and hollow 
beams. We will then present numerical results 
showing that the space charge limiting current can 
take rather different values when taking into 
account the presence of electromagnetic fields in 
tile cavity. 

To derive the limiting current, we impose the 
following energy conservation condition for the 
relativistic beam: 

K = (r _ 1) mc2 + eb + K, i 
- (r. - 1) nlc2 

(1) 
- 4 

C’ 

.dhC re 4 is the potential of the accelerating 
system 2nd K2 is the ponderomotive Hamiltonian. 
I‘he left-hand side of Eq. (1) is the particle 
guiding center Hamiltonian K which is the total 
particle beam energy inside the wave cavity. Here we are using the notation of Refs. 6 and 7. The 
Hamiltonian K(R, p, Ull) results from an averaging 
over the gyromotion and fast oscillations due to 
the waveguide elec romagnetic fields. Both 
averages were done s ,7 using Lie transforms 
resulting in a Hamiltonian containing only the slow 
effects on the guiding center. The averaged 
dynamical variables have the following meaning: 
The first variable R is the radial position of the 
guiding center, where R - 0 is the center of the waveguide. The next variable p is the magnetic 
moment and is related to the perpendicular guiding 
center drift U where B 1 through p - m+2B, 
includes the external magnetic field, and the 
longitudinal and azimuthal self-fields. Finally, U 

II - II 
- lY is the parallel world velocity of the 

guiding center, where the relativistic factor is 
defined as 

r = (1 + 2.$ + $)1/2 
ml2 C 

In Eq. (l), the term (r - 1) IIIC~ is the kinetic 
energy of the beam particle, e$(R) is the potential 
energy which, in this case, is the beam space 
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charge electrostatic energy, and K2(R, P, U/l) is 

the FondaromOtiVe Hamiltonian, which, being 
velocity-dependent, is a generalization of the 
ponderomotive potential. We see from Eq. (1) that 
a positive ponderomotive energy K2 enhances the 
potential energy eb while a negative K2 
counterbalances ed. Alternatively, we can think 
of K2 as reducing or enhancing edc, the 
accelerating potential. 

Next ( we shall state the appropriate 
expressions for the electrostatic potential 4(R) 
and the ponderomotive Hamiltonian for both solid 
nnd hollow beams. It is possible to show that when 
the ponderomotive energy is included in the 
calculation of the limiting current, the maximum 
energy depression of the function e$(R) + K2 
(R, p, U,,) still occurs at R - 0 for solid beams 

and at R - R, where R, is the inner beam radius, 
for hollow beams as in the case when K2 - 0. 
Therefore, we evaluate the left-hand side of Eq. 
(1) at R - 0 and R - R, for solid and hollow beams, 
respectively. 

The electrostatic potential 
solid beam is given by4 

for a relativistic 

$(R = cpLID - $- (1 + 2Pn %) , 

II % 
(2) 

where I is the total beam current, and Rb and R, 
are the beam and waveguide radii, respectively. 
For a hollow beam, one can show that 

i(R - Ra) 
HOLLOW 

21R2 a % 

(< - R%)VII 
Pn F. (3) 

a 

To illustrate how this formalism works, we 
choose the TEll mode for the oscillating 
electromagnetic field, since the maximum 
electromagnetic field occurs at the center of the 
beam, for a solid beam, and the TEOl mode, since 
the maximum electromagnetic field can be set at the 
inner beam radius, for a hollow beam. These are 
the beam radial positions where the beam 
electrostatic energy build up is maximum. The 
derivation of the expression for the relativistic 
ponderomotive Hamiltonian for magnetized particles 
is rather involved. In Ref. 6, a general formula 
for the ponderomotive Hamiltonian was obtained 
[Eqs. (45) and (46) in that paper]. In that 
derivation, it was allowed for arbitrary 
kp, E E 

4 1 
w/n, k ik 

n 
v/c < 1, polarization, and 

for slowly growing and spatially modulated waves, 
where w and k are the mode frequency and 
wavenumber, respectively, and where n - eB/rmc. 
However, in this work we need particular 
expressions for the ponderomotive Hamiltonian 
corresponding to kp << 1, and to TEOl and TEll 
modes. Hence, we need to reduce Eqs. (45) and (46) 
of Ref. 5 by imposing the correct forms for the 
waveguide field amplitudes. We know that the 
parallel components of both fields is zero while 
the perpendicular component is only azimuthal for 

the TED1 mode, IEli - IE,12, but azimuthal and 

radial for the TEll mode, IElI - IEiI + IE~I 

After some algebra we obtain the following 
expression for the ponderomotive Hamiltonian 

e21E112 (W-kV) 2 

K2(R, P, V,Q - ~ 
lb2 (w - k,,V,,)2 - i-l* ' 

(4) 

Note that this expression is the same as Eq. (41) 
of Ref. 7, derived specifically for a TEOl mode. 

We note that K2 i 0 for Iw - kllV,lI/lnlP 1, as we 

needed to enhance or to counterbalance the beam 
space charge electrostatic energy. 

The substitution of Eqs. (2), or (3), and (4) 
in Eq. (1) yields the following expression for the 
conservation of energy 

[r + ‘- 
e El1 

2 (w-kV) 2 

rm2c2w2 (w - kllVll)2 - tJ2 
- rol V/, 

for solid beam 

= (5) 

for hollow beam 

To calculate the limiting current, we will 

Z~~Z1a1tZ. 

<< 1, which is the case in most 

However, our calculations carries 
through straightforwardly for III/U = 1, or even II 
for “JUll ” I. It is also convenient to 

assume k]lV,I/w << 1, though not required. In fact, 

in our derivation, we did not make this 
assumption. However, this assumption would be 
physically reasonable since it is experimentally 
desirable to set up a non-propagating, or slow 
propagating wave field so that the power spent in 
maintaining the field is minimum. Hence, from Eq. 
(5), we find the expression for the current in the 
wave cavity. The result is 

r 
I(T) = I,(r2 - 1,1'2($ - 1 + A) 

q2 - r* 
(6) 

2 222 where K = e21EZZl /m c w , 11 - eB/wmc, 

r = (1 + U2/c2)l'2, 
with the I! 

and IG is the Alfven current 
g ometric factor. 

defined as 
For a solid beam, IG is 

IG 
SOLID -1 

and for hollow beam as 

I HOLLOW 
G 

(7) 

(8) 

To determine the limiting current, we maximize 
I(r) as given by Eq. (6). The maximization 
condition, for both geometries, is 

r3 _ r. _ a3(0* + r* - 2) _ o . 
h2 - r2j2 

(9) 
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* 
The solution of Eq. (9) gives a root F - F , 
which, when substituted in Eq. (6), yields the 

limiting current Ilim - I(F*). We select the 

correct root F* by knowing that, when K - 0, r* 
reduces to the well-known' standard limiting 

current calculation without the rf waveguide 

mode. For this case, the maximization condition 

gives r* - r. l/3 , which implies, from Eq. (6), that 

K=o 
'Lim 

213 - IG(ro - 1)3'2 (10) 

I 0.1 02 03 a4 I 
K 

n-o Fig. 1 The ratio Ilim/ Ilim versus n for various 
rj and r0 - 1.2. 

To realize the extent to which the presence of 
electromagnetic fields in the wave cavity alters 
the limiting current, we solve Eqs. (9) and (6) 
numerically for typical parameters and plot the 
results in Fig. 1. In Fig. 1, we plot Ilis,/ 

17;: versus n, for various q at fixed IO - 1.2 

(100kV electron beam). We vary n between n-0, 
n-0 

"hen Ilim/Ilim - 1, and n-0.5, which corresponds 

to an oscillating electric field of amplitude 

E 10 
i = 120kV/cm if w 1 10 rad/sec, well below the 

breakdown field. We observe that the 
electromagnetic fields in the wave cavity can 

increase (I . /I n-o 
n Olrm lim > 1) or decrease 

(Ilim/ Ilim < 1) the limiting current as compared 

with a cavity without fields in it. An increase 
occurs for q > 1 (in fact, 11 > r , 
c-l > w), 

equivalently, 
which corresponds to a negative 

ponderomotive energy, while a positive 
ponderomotive energy (a < 1) decreases the limiting 
current. For example, from the plot, for ri - 0.2 
and a = 1.7 we obtain a 95% enhancement while for 
the same n but for any 7 < 1 there is a complete 
current cut-off in the cavity. 

In conclusion, we developed a theory to treat 
the propagation of a charged particle beam in a 
wave cavity when electromagnetic fields are 
present. This physical situation is typical in 

present experiments. We find that the limiting 
current problem is modified considerably to account 
for these fields. 
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