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PONDEROMOTIVE EFFECTS ON CHARGED PARTICLE BEAM LIMITING CURRENT
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The physical mechanism responsible for the
space charge limiting current in a wave cavity and
in presence of electromagnetic fields is
addressed. It is found that the ponderomotive
cnergy alters radically the build up of beam
clectrostatic energy. As a consequence, the
limiting current can be greatly decreased or
enhanced depending on whether the ponderomotive
energy is positive or negative, respectively. This
effect could be observed experimentally and it is
anticipated to have important practical
consequences for present high-current particle beam
cxperiments.

The propagation of high-current particle beams
in a wave cavity or drift tube and in presence of
electromagnetic fields is a basic theoretical
problem in physics. The latest revival in its
thecretical interest reflects the recent
experimental advanges in high-power free-electron
lasers”, gyrotrons®, collective-ion accelerations”,
and so on. A basic phenomena occurring in these
experiments is that as the beam current is
increased, an electrostatic potential depression
builds up due to the keam’s self space charge field
and as a result, the beam current cannot be
increased beyond a certain amount. This is the
limiting current of the cavity and it is a
theoretical limit on the current, and hence on the
power, in devices like gyrotrons®. The problem of
limiting current of particle beams in a cavity has
been addressed before™, but not taking into account
the presence of electromagnetic fieldslig the
cavity. However, in these experiments~ ~, the
particle beam does propagate in the presence of
clectroragnetic fields which changes fundamentally
the physical situation. The oscillating
clectromagnetic field creates a quasistatic
ponderomotive potential” which affects the particle
wotion, and hence, the limiting current. The
static magnetic field, on the other hand,
introduces resonances due to the coupling of the
gyromotion with the particle motion in the
electromagnetic wave field. Again, the limiting
current calculations should reflect this
occurrence. The inclusion of all these issues
restlts in a more complete and realistic treatment
of the limiting current problem applicable to
present experimental situations.

The practical_consequence of this work is that
experimentalists® 7 will have at hand the right
behaviour and value of the limiting current for
their experiments, which, typically, Zan be
considerably different from the value™ found
without considering the electromagnetic fields in
the cavity. We find that the combined effects
resulting from the oscillating electromagnetic
field and the static magnetic field can greatly
decrease or enhance the limiting current depending
on whether the ponderomotive energy is positive or
negative, respectively. Our calculations show that
we can obtain, say, an order of magnitude reduction

in the limiting current of a 100kV relativistic
electron beam using only modest electro-magnetic
fields, and consequently, a decrease in power
produced by, say, a gyrotron. Physically, this
occurs because a positive ponderomotive energy of
some appropriate cavity mode enhances the beam
space charge electrostatic energy. Alternatively,
we can think that the positive ponderomotive energy
reduces the potential energy associated with the
beam accelerating system. This is reflected as a
decrease in the beam kinetic energy with a
consequent decrease in the current that is able to
propagate through the cavity.

We will first derive the limiting current as a
function of beam energy, waveguide field and the
external magnetic field for solid and hollow
beams. We will then present numerical results
showing that the space charge limiting current can
take rather different values when taking into
account the presence of electromagnetic fields in
the cavity.

To derive the limiting current, we impose the
following energy conservation condition for the
relativistic beam:

K= (- 1) mc2 + ed + K2

2
= (FO - 1) me" = e¢c,

(&Y

where ¢ 1is the potential of the accelerating
system and K, is the ponderomotive Hamiltonian.
The left-hand side of Eq. (1) is the particle
guiding center Hamiltonian K which is the total
particle beam energy inside the wave cavity. Here
we are using the notation of Refs. 6 and 7. The
Hamiltonian K(R, g, U,) results from an averaging

over the gyromotion and fast oscillations due to
the waveguide elecgrsmagnetic fields. Both
averages were done '’ using Lie transforms
resulting in a Hamiltonian containing only the slow
effects on the guiding center. The averaged
dynamical variables have the following meaning:

The first variable R is the radial position of the
guiding center, where R = 0 is the center of the
waveguide. The next variable u is the magnetic
moment and is related to the perpendicular guiding

center drift U_L through p = mUi/ZB, where B

includes the external magnetic field, and the
longitudinal and azimuthal self-fields. Finally,
U“ = FV” is the parallel world velocity of the

guiding center, where the relativistic factor is
defined as

2
U
I‘=(1+21‘—g—+——£l—)1/2
me c
In Eq. (1), the term (I' - 1) mc2 is the kinetic

energy of the beam particle, ep(R) is the potential
energy which, in this case, is the beam space
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charge electrostatic energy, and Ko (R, &, U“) is

the ponderomotive Hamiltonian, which, being
velocity-dependent, is a generalization of the
ponderomotive potential. We see from Eq. (1) that
a positive ponderomotive energy K, enhances the
potential energy e¢ while a negative Ky
counterbalances e¢. Alternatively, we can think
of K, as reducing or enhancing e¢c, the
accelerating potential.

Next, we shall state the appropriate
expressions for the electrostatic potential ¢(R)
and the ponderomotive Hamiltonian for both solid
and hollow beams. It is possible to show that when
the ponderomotive energy is included in the
calculation of the limiting current, the maximum
energy depression of the function ed(R) + K2
(R, pu, U") still occurs at R = 0 for solid beams

and at R = R_ where Ra is the inner beam radius,
for hollow beams as in the case when K, = 0.
Therefore, we evaluate the left-hand side of Eq.
(1) at R = 0 and R = Ra for solid and hollow beams,
respectively.

The electrostatic potential for a relativistic
solid beam is given by
I Rc
= (1l + 2&n ) , (2)

Y Ry

where I is the total beam current, and R, and R,
are the beam and waveguide radii, respectively.
For a hollow beam, one can show that

SOLID
(R = 0) -

R

HOLLOW 1 c
$(R = R ) == (1L + 2&n 37)
a V" Rb

218
- e in -, (3)
2 2 R
(Rb - Ra)V" a

To illustrate how this formalism works, we
choose the TEj) mode for the oscillating
electromagnetic field, since the maximum
electromagnetic field occurs at the center of the
beam, for a solid beam, and the TEyy mode, since
the maximum electromagnetic field can be set at the
inner beam radius, for a hollow beam. These are
the beam radial positions where the beam
electrostatic energy build up is maximum. The
derivation of the expression for the relativistic
ponderomotive Hamiltonian for magnetized particles
is rather involved. 1In Ref. 6, a general formula
for the ponderomotive Hamiltonian was obtained
[Eqs. (45) and (46) in that paper]. In that
derivation, it was allowed for arbitrary
kp, E ﬂE 1 w/, k {k n v/c < 1, polarization, and

for slowly growing and spatially modulated waves,
where w and k are the mode frequency and
wavenumber, respectively, and where O = eB/Tmec.
However, in this work we need particular
expressions for the ponderomotive Hamiltonian
corresponding to kp << 1, and to TEgy and TE
modes. Hence, we need to reduce Eqs. (45) and (46)
of Ref. 5 by imposing the correct forms for the
waveguide field amplitudes. We know that the
parallel components of both fields is zero while
the perpendicular component is only azimuthal for

the TEy; mode, IE.J_|2 = |E®!2
radial for the TE;; mode, IELIZ - IE;| + |E§| .

but azimuthal and

y

After some algebra we obtain the following
expression for the ponderomotive Hamiltonian

ZIE

e“lE |

2
e M

KZ(R’ b, V") - 2 (4)

me2 (w - kHV")2 -0

Note that this expression is the same as Eq. (41)
of Ref. 7, derived specifically for a TEg, mode.

We note that K, 20 for |w - k”VHI/IQ'E 1, as we

needed to enhance or to counterbalance the beam
space charge electrostatic energy.

The substitution of Eqs. (2), or (3), and (4)
in Eq. (1) yields the following expression for the
conservation of enerpy

2

( elEL|2 (w - kuV“) .
T + -

Tm2c2w2 (w - k"V")z - 02 0 ﬂ

1 R

. g (1 + 24n —g), for solid beam

2 Ry

me
= (5)

L R 2R
" 9~§ (1 + 24n

c
2
me Rb Rb - Ra a
for hollow beam

To calculate the limiting current, we will
assume UL/UH << 1, which is the case in most

applications. However, our calculations carries
through straightforwardly for UL/U" =~ 1, or even

for UL/U“ >> 1. It is also convenient to
assume k“VH/w << 1, though not required. In fact,

in our derivation, we did not make this
assumption. However, this assumption would be
physically reasonable since it is experimentally
desirable to set up a non-propagating, or slow
propagating wave field so that the power spent in
maintaining the field is minimum. Hence, from Eq.
(5), we find the expression for the current in the
wave cavity. The result is

r
~ 2 1/2,°0
SR B e T

where x = ezlgllz/mQCZUZ, n = eB/umc,

r = (1 + U2/02)1/2, and I, is the Alfven current
with the guometric factor. For a solid beam, I is
defined as

R

3
GSOLID - mg (1+2 fn =S -1 N

B

I

and for hollow beam as

3 R
1 HOLLOW - e (1 +2 in [
G e Rb
2R? R,
a -1
- 5 £n R )y o, (8

Rb - R a
a
To determine the limiting current, we maximize

I(I') as given by Eq. (6). The maximization
condition, for both geometries, is

3 R nF3(n2 + F2 - 2)

-0 . (9)
(n2 - F2)2
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The solution of Eq. (9) gives a root T = F*,
which, when substituted in Eq. (6), yields the
limiting current Iyim = I(P*), We select the
correct root I' by knowing that, when « = 0, F*
reduces to the well-known® standard limiting

current calculation without the rf waveguide

mode. For this case, the maximization condition
*
gives ' = F01/3, which implies, from Eq. (6), that
k=0 2/3 3/2
Ilim = IG(I‘0 - 1) (10)

Fig. 1
n and T

Thelr;tio Iyiw/ I;Zg versus k for various

0

To realize the extent to which the presence of
electromagnetic fields in the wave cavity alters
the limiting current, we solve Eqs. (9) and (6)
numerically for typical parameters and plot the

results in Fig. 1. 1In Fig. 1, we plot Iin/
I;;g versus x, for various n at fixed I'. = 1.2

(100kV electron beam).

0
We vary x between x=0,
when Ilim/I;;g = 1, and x=0.5, which corresponds
to an oscillating electric field of amplitude
120kV/cm if w = 1010

Ei = rad/sec, well below the

1034

breakdown field. We observe that the

electromagnetic fields in the wave cavity can
k=0
lim
< 1) the limiting current as compared

increase (Ilim/I > 1) or decrease

&=0

i/ Ilim
with a cavity without fields in jt. An increase
occurs for n > 1 (in fact, n > T, equivalently,
1 > w), which corresponds to a negative
ponderomotive energy, while a positive
ponderomotive energy (n < 1) decreases the limiting
current. For example, from the plot, for « = 0.2
and n = 1.7 we obtain a 95% enhancement while for
the same x but for any n < 1 there is a complete
current cut-off in the cavity.

In conclusion, we developed a theory to treat
the propagation of a charged particle beam in a
wave cavity when electromagnetic fields are
present. This physical situation is typical in

present experiments. We find that the limiting
current problem is modified considerably to account
for these fields.
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