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Abstract 

The trapping and detrapping of electrons plays a significant 
physical role in free electron lasers (FEL),’ and the dynamics of 
trapping and dctrapping particles is now understood in simple 
adiabatic svstems.2 It is possible that beam heating could be 
greatly rediced in an FEL with truly adiabatic dynamics. This 
would be useful, for example, in a beam recirculation scheme. 
Previous work2 indicates that the rms energy spread in such a 
beam would scale like eon(c), where E is the adiabatic parameter. 
This work is being generalized to apply more directly to the single 
particle dynamics of an FEL. 

Introduction 

Short wavelength FEL’s operate in the single-particle or 
Compton regime. Because these dcviccs cannot cfficisntly extract 
energy from an electron beam during a single pass, a recirculation 
scheme of some sort is desirable. A very simple scheme would 
involve accelerating the beam after each pass through the FEL, 
then reinjecting it once the cxtractcd energy has been restored. 
Because the FEL interaction is a resonant process, the injected 
clcctrons must all have an energy close to the resonant energy in 
order for lasing to occur. Unfortunate!y, beam heating will occur 
during each pass through the FIX. limiting the number of times a 
single beam can be recirculated, and thus limiting the efficiency of 
the laser. 

Recent theoretical work2 indicates that beam heating could be 
made small enough to allow a single beam to be recirculated many 
times, without making the FEI, structure excessively long. Such 
an FEL might consist of three components. First, a wiggler in 
which the magnetic field strength is ramped up adiabatically, in 
order to trap the injected particles. Second, a standard tapered 
wiggler, in which the resonant energy (and, hence, the energy of 
all the trapped particles) is decreased adiabaticiilly. (This is how 
encr~ is’e’xtra&cd from the beam.) Finally, a wigzlcr in which 
the &enetic: field is ramped down adiabatically, allowing the 
particle; to dctrap. ‘l&is would require a structuI-C npproximlitely 
th:ee times as long as a standard wiggler. 

Adiabatic invariance theory (.4lT) is an averaging theory, 
and thus it reuuires a separation of time scales. In xn FE],, the fast 
time scale is the svnchr&n oscillation period of a particle in the 
wiggler, while the slow time scale is the time during which this 
narticlc sees a significant chance in the wiz:ler parameters. AIT 
&nsixts. essentially, of avernfing over ttlesynchrot,-on oscilln- 
tions of a particle. The adiabatic parameter is the ratio of the fast 
time scale to the slow one. For an FEL, this parameter, 
F=I+~~I,~~~~, can he written as a ratio of length scales, where Lsyn 
is the loc;11 synchrotron wavclcngth and I~po,~ is the local charac- 
teristic length scale of the ponderomotivr potential. 

Consider a relativistic electron and an electromagnetic wave 
traveling through a wiggler magnet. A standard first approwims- 
tionl is to assume the electron is close to the axis of the device, 
where transverse gradients can be neglected. If we assume both 
the wiggler field and the signal field to be circularly polarized, this 
implies vector potentials of the form 

A, =A& )[ (:s s CDS Jk (z)dz-o t s) - 9 si~(/Ldlldz-%t) 3 (lb) 
J 

where the w subscript refers to the wiggler, the s subscript refers 
to the electromagnetic signal, and z is the coordinate along the 
axis. 

The relativistic Hamiltonian for this system is 

H =dl + (P - A)2, (2) 

where A=A,+A,, P=p+A is the canonical momentum, and p is 
the linear momentum. We have chosen units such that the eler*nn I-l-. .  

rest mass, the electron charge and the speed of light are a11 unity. 
Because H is indeuendent of the transverse coordinates. P, ana P.. 
are constants of ihe motion. For simplicity, we as&me these 
constants are zero. Because there is no z-component of the vector 
potential, Pz=pz. Thus, we obtain the Hamiltonian 

The cosine term is called the ponderomotive potential. 

One can make a number of canonical transformations and 
further approximations to obtain’ 

H 8 = kw+h 
- (W - 

Yr 

where yr and vr are the energy and phase of a synchronous parti- 
cle, the phase, w, is the coordinate, and the deviation in energy 
from resonance, Sy, is the canonical momentum. Also, z is the 
independent variable, and Sksrks-o, is small. This Hamiltonian is 
only valid locally, because it requires an expansion about the local 
resonant energy, while Eq. (3) can describe the full length of the 
FEL. 

The Mode! 

We study a simple model in order to understand the essential 
dynamics of trapping and detrapping particles in systems de- 
scribed by Eq.‘s (3) and (4). The Hamiltonian we use is 

H(p,q,y) = $p2 + A(Y) cos(q), (5) 

where y=&(q+t), with E the adiabatic parameter and A(y) taken to 
be gaussian in al1 numerical simulations. This represents a 
nonrelativistic particle interacting with a large amplitude wave 
packet that is traveling to the left with group velocity ~~3-1. The 
particle mass and the wavenumber of the dominant Founer com- 
ponent are taken to be unity. A simple transformation will yield a . . . . . stationary wave packet With dominant phase velocity v$=l. Be- 
cause AIT depends on the functional form of the momentum, p, 
rather than on H, it is not difficult to generatize Eq. (5) to the rela- 
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Figure la shows the potential described by Eq. (5), as well 
as in envelope A(y), for &=0.12. Figure lb shows all the separa- 
trices in the associated phase space. A separatrix is a constant cn- 
ergy contour which separates trapped trajectories from untrapped 
tr;.jectories. A separatrix always contains an unstable fixed point. 
Figure lb also shows three particle trajectories, sketched in a 
schematic way, in order to show trapping, bound oscillations and 
dctrapping. As the wave packet moves to the left, the separatrices 
on the left side of Fig. lb grow in size, while those on the right 
shzink. Trapping and dctrapping always involves a particle trajec- 
tory crossmg a separatru;. 
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Fig. la The potential of Eq. (5) and its gaussian envelope; 
e=O. 12. 
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Fig. 15 The phase space corresponding to the potential of Fig. 
la. 

Adialwtic Invariance Theorv 

Given a Hamiltonian of the form H(p,q,y), with yzE(q+t), 
rhere exists a straightforward scheme2 to calculate an approximate 
invariant J. First, a canonical transformation is used to write the 
momentum as a new Xamiltonian: P(E,y,q)=p, where E is the 
value of the old Hamiltonian, and q is the new independent vari- 
able. ‘Xs makes it more convenient to average over the fast vari- 
ations in cl. Nest, we write I as an asymptotic series: 

J = Jo(E,y,q)+&Jl(E,y,q)+E?J2(E,y,q)+ . . . (6) 

We require that dJ/dq vanish order by order in E. This yields an 
infinite hierarchy of equations for the J,. We can solve for Jo, Jt, 
and so on in turn, by requiring that each of the Jn be periodic in q. 

In Ilamiltonian systems of the form H(p,q.~t), Jo is any 
function of the action.2 The action. l(E,Et), is just the phase spx~ 
area enclosed by a trajectory during a single oscillation; it is writ- 
ten as a loop integral: I(E,Et)=$ dq P(E,Et,q). The phase depcn- 
dent first order term Jt has been calculated in general and in a 
number of specific cases (see Ref. 2 and references therein). 

AIT has only recently been applied to systems like Eq. (5). 
We have obtained the following analytic results. For untrapped 
particles, Jo and J1 are given by 

J(l(E.y) = 3 JZ(E+A) EC(k) sign(p) + 2rrE. 

$$l(E,y,q) = [E,(k)l:,(x,k)-F,(k)E,(x.k)l sign(rr-cl) 

(?3) 

e2 m) Ei(x,k) -& 
-?i 

f;,(x.k) sign(r;-q)sign(p) ] 

+ x 
[ 

m) E,(k) - z-. F,(k) sign(n-q)sign(pj. 
v 2(E+A) 1 (7bl 

x = 3(x-y) signin-q) 

For trapped particles, Jo and Jt are given by 

(7C) 

Jo(E,y) = 8 \K E,(k-1) 
[ 

Ag,,h-l,l, 

&$(E,y,q) = (rr-q) vx [E,,(k-1) - $F,(k-I)] 

+[ E,(k-l)F,ia(x),k-l)-F,(k-l )E,(tx(x),k-1 )]siE”(n-rl)aignip), (8b) 

x = f- +-(n-q) sign(rr-qj tXC) 

We have used the following notation in Ilq.‘s (7) and (6). I’, and 
E, arc complete elliptic integrals of‘ the first and ~cx~I~I~~ kind, as 

defined in Ref. 3. Fi and Ei are the corresponding incomplrtc iri- 
tegrals. The function sign yields the sign of its argument with unit 

magnitude, k=dZA/(E+A), a(x)=sin-t[k cos(x)l, and Ayl’$. 
Whenever we write q in these equations, we actually mesn (~1 mod 
27L). 

The first term in Eq. (7a) is the action. Thus, the lowest or- 
der adiabatic invariant for untrapped particles in this systcrrl i< 
Jo=l(E,y)+2~E, not just the action. This is ;I fundamer~tal depar- 
ture from previously studied systems. The only term in Eq. (8n) 
is the action, so we have obtained the expected result for trappcti 
particles. 

Figures 2a and 2b show the result of nu~rwicall~ integrating 
a particle throu,gh the system tlescrihcd hy Eq (5). Figure 2a is ;I 
plot of the partlclc energy and loc;~l wave anlplitud~ as ;I function 
of time. The crossing of these t\r’o curvt”( in(llcatr\ \vhcrs II’;I~~- 
ping and subsequent &trapping oi‘cur;. I;ifure 7b i\ a plo: oE .I() 
and JtzJo+eJt for the same particle. There art: discontinuitlcs in 
both of these curves at trappin,g and dempping, htxxuw the :&I- 
batic invariant is a different function for trapped and untrapped 
particles. The first order corrected invariant, J’, unticrgoes much 
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smaller oscillations than Jo, except near the separatrix, where it 
diverges logarithmically. While the energy undergoes large 
excursions during the wave-particle interaction, the adiabatic in- 
variant remains constant to a good approximation, except during 
trapping and detrapping. 
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Fig. 2a Particle energy (solid) and local wave amplitude 
(dashed). 
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Fig. 2b Jt (solid) and Jo (dashed) for the particle in Fig. 2a. 

Separatrix Crossing Theory 

Separatrix crossing theory2 (SCT) is used to calculate, 
through first order in E, the change in the adiabatic invariant J 
during trapping and detrapping (i.e. when the particle trajectory 
crosses a separatrix). Such a theory is necessary, because AIT 
breaks down near a separatrix, so that J is not conserved for trap- 
ping and detrapping particles. This can be seen in Fig. 2b, which 
shows a net change in the adiabatic invariant of a particle that traps 
and then detraps. SCT proceeds by using AIT when a particle is 
far from the separatrix, then using perturbation theory (where E- 
Esx, with Esx the energy on the separatrix, is the new small pa- 
rameter) when the particle is near the separntrix, and finally 
matching the two solutions in intermediate regions. This is an 
asymptotic theory, which has been shown2 to work well in simple 
systems when E < 0.1 

SCT has shown2 that, during a separatrix crossing, J re- 
mains constant to lowest order, but undergoes a phase-dependent 
change in first order. For systems with a symmetric potential, this 
change is O(E), while for asymmetric systems, it is O]&(E)]. 
Previously, SCT had only been applied to systems of the form 
H(p,q,&t). It is currently being applied to the system of Eq. (5). 
Although, the analytic results have not yet been fully tested, it is 
clear that the change is O]&(E)]. 

Until now, we have been discussing a single particle. Given 
a beam of noninteracting particles, trapping and detrapping results 
in an nns spread in the adiabatic invariant of the same order as the 
change for a single particle2. The same is true for the energy. 
Furthermore, when many interactions are involved, this spread 
accumulates as in a random walk process. Thus, after N passes 
through an adiabatic FEL, an initially monoenergetic beam of par- 
ticles would have an rms energy spread of order fi&On(E). If 

EzLsyn/Lpon -< 0.1, the beam could be recirculated N > 1 X times 
before beam heating would prevent further operation. 

Conclusions 

Theoretical work in progress indicates that an FEL with a 
recirculating beam of electrons might be a practical device, as long 
as the wiggler parameters change slowly during trapping and 
detrapping of the beam, so that excessive beam heating does not 
occur. This could greatly increase the efficiency of a short wave- 
length FEL operated in the Compton regime. Standard tapered 
wigglers are adiabatic for the trapped particles, but these particles 
are significantly heated each time they enter and exit the wiggler. 
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