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Abstract 

While it is understood that the main limitation of beam life- 
time in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven 
1s the emiltancc growth due to intra-beam scattering, it is important 
to evaluate and understand both the cmittance growth and nature of 
the tune shift due to multiple beam-beam crossings of the bunched- 
beams of heavy ions. We note withln RHIC. fully stripped lg7Au 
ions (charge 79c+) will survive up to ten hours in the collider, wtth 
six beam crossings per revolution. With this motivalion, we have 
developed a fully relativistic theory of both the averaged emittance 
growth and the averaged tune shift for the bunched-beam, bunched- 
beam interaction thal IS based on a convolution integral over the 
dcnsitlcs of the two intcrpcnelrating bunches. In order lo calculate 
this Integral. we choose 10 work in a frame where one bunch of the 
collider is stationary, and the other is highly relativistic. This frame 
has the additional advantage that Ihe microscopic heavy ion interac- 
tion becomes perpcndtcular m nature. In this frame (he convolution 
integral acquires many simplifying and physIcally interesting fea- 
tures. 

Introduction 

1.1 Motivation 

The overall problem of studying the beam-beam interaction in 
colltders continues to be of great interest. Over the years, many 
models have been proposed for the well known tune shift due to 
beam crossing of infinitely long beams [l-3]. or bunched beams 
[4,5]. Of particular current interest is the beam-beam instability 
problem due to many beam crossings 131. 

In this paper WC present the foundations of a microscopic 
model [6] of Ihc bunched-beam, bunched-beam interaction, where 
this model compliments many of the results derived earlier. Prelim- 
inary results from this model will he presented here, where these 
include both the emittance growth and the tune-shift due to 
bunched-beam. bunched-beam crossing. The prchminnry results 
outlined here indicate the usefulness of the microscopic approach. 
and suggest that our more general approach to the beam-beam 
interaction could be quite useful in tackling the more complicated 
beam-beam instability problems. 

1.2 Microscopic Interaction 

Our model respects the form 01 the rctativlstic Llenard- 
Wiechert potential [7] between two charged particles during beam 
crossing. In general, this interaction is quite awkward to work with 
because both the velocity and acceleration of a single particle are 
required 10 find the fields between Ihe two particles of interest. To 
overcome Ihis problem, we transform 10 a frame where one of the 
bunches is at rest and the other bunch is highly relativistic. The 
particles in the highly relativistic hunch are weakly deflected by the 
ftclds of particles in the bunch at rest. and thus the electric field 
obtamcd from the Llenard-Wicchert potentials can be reduced to a 
more transparent and constant velocity form [h]. In this new frame 
the highly relativistic electric field is mainly perpendicular in 
nature. and IS given by 
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where Ze is the charge of the particles (identical particle scattering), 
R is the distance between the particles, yis the Lorentz factor and p 
1s the velocity of the beams, i is the time and g gives the time 
dependence of the interaction. The perpendicular component of the 
momentum transfer felt by a particle in the rest bunch can be 
readily calculated from Eqs. (1) and (2). In this way the scattering 
angle between the two particles is calculared to be: 
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where A is the atomic number of the charged nucleus, r. is the 
classical radius of the proton and n and n’ labels the individual 
particles in the fixed and moving bunches respectively. 

I .3 Macroscopic Quantities of Interest 

In our approach, WC first relate the macroscopic quanlily of 
interest to the two body microscopic interactions that give rise lo an 
average emittance growth or the average tune shift. Our model 
assumes that Ihe two-body scattering angle 0”“. in Eq.(3) can be 
directly equated with a change in the particles x’. y’ momenta. 
Without loss of generality, we restrict ourselves to the x-direction 
only. Utilizing rhe definition of emittance given by the Courant- 
Snyder invariant [8], the change in normalized emittance due to a 
two particle interactIon can be written as, 

AE, = 2$$5:E< sin qxAx’ + 7r$p&x’]2 14) 

where p: is the beta function where the two beams cross (taken to 
be a constant), cpX is the angle variable of Ihe particle, Ax’ is the 
projection of Onn, in the collider frame to the x-direction, and E, is 
the normalized emittance. The averaged macroscopic emittance 
growth is found to be a double summation over all the two body 
scatlcrmg angles projected m the x (or y) direction. and is given by, 

(q = q’ c !$,. co2 5”“. 
11.1!’ 
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where N, is the number of particles per hunch and CDS {,,, gives the 
projcclion of the scaltering angle onto the x axis. 

Addttionally. the two-body tune-shift in the x (or y) direction 
is 

P: aAx’ 
A”, = zmt 

II 
(6) 

where v, is the x component of the particles position in the 
stationary bunch. In a similar manner, after a double summation, 
we find the average macroscopic tune-shift after beam crossing to 
be given by Ihe expression, 

(A\tx) = 2 y c2 @s 5 &(t - 2 COS’ &,,I (7) 

Evaluation of Macroscopic Quantities 

2. t Coordinate Definition 

Figure 1 shows the coordinate diagram used for the calcula- 
tions of the macroscopic quantities defined above. For the reasons 
oullined above, WC prefer to transform our colliding bunches from 
Ihe collider frame to a frame where one of the bunches is at rest. In 
this frame (shown in Fig. 1). the moving bunch has an effective 
Lorentz factor given by ‘I,~ = 2$ - 1. In Fig. 1, ? is a vector 
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Bunch 1 (rest) Bunch 2 (moving) 

1’ 

i) R = 7, - ?,* + ri 
Ii) Center of mass frame (Laboratory frame) 

Rg. 1 Coordinate diagram. 

extending from the center of the moving bunch to the center of the 
fixed bunch.?. and-f), are single particle coordinates in the moving 
bunch or the dtnch at rest respectively. The coordinate ?d, given in 
Eq.(3), is now seen to be the distance between the two particles 
from each bunch. 

2.2 Integral Formulation 

In order to evaluate the macroscopic quantities defined in Eqs. 
(5) and (7), we replace the double summation by a double integral 
over the number densities pr and p,, for the two bunches. In this 
way, the averaged emittance growth is given by. 

(AEJ = 2 J J d3r,d3r,.p,~)pm~,)~~“, co? 5,” (8) 

and the averaged tune shift in the x-direction is given by, 

(Avx) = $j $ $0 
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Assuming for simplicity a Gaussian form for the normalized num- 
ber density, the Lorentz transformed bunch al rest in Fig. 1 has the 
form, 

p,ef = 35 1 e - &’ + +) / OP’ e - (s - 3,)’ / 2o.J 
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where s is the longitudinal coordinate, d = ox = tsY is the average 
transverse normalized emittance of the beam, uc is related to the 
longitudinal extent of the bunch, and p* = pi = p’. Similarly, the 
Gaussian number density of the moving bunch \s given by the 
Lorentz transformed expression, 

wB 12 P,lr=~ ce- 1s 
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where S,,,, gives the longitudinal positions of the bunch centers. 
In order lo deal with Eqs. (8) and (9), we express the density 

functions and the scattering angle in terms of their corresponding 
Fourier transform functions. Through convolution theory of Fourier 
integrals, the total number of integrations required in Eqs. (8) and 
(9) are halved leaving [6] 
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2.3 Emittance Growth 

The final expression for the emittance growth can be evaluated 
by substituting the results of the Fourier transforms (Eqs. (14-16)) 
into Eq. (12). Separating between longitudinal and transverse coor- 
dinates, the emittance growth is given by, 

lrnx) _ “:@i: J d’K eX’ z‘ e - P’a(K?, + Kt) 12~ 

xe - K:o$ I? 
e (18) 

At this point, another advantage of working in the frame defined in 
Fig. (1) can be seen. For large y, the Gaussian representing the 
longitudinal coordinate can be approximated by the expression, 

e 
- K&y’ I? 

(19) 

This has the advantage that the Fourier integral in Eq. (12) for the 
emittance growth, is separable and readily evaluated. In this way 
the final expression for the emitlance growth is given by, 

(AE,) = 5 riN,y - “$” ig (20) 

2.4 Tune Shift 

The quadrupole nature of the tune-shift interaction due lo 
beam-crossing may be seen from Eq. (17). The projection acting on 
the scattering angle, 1 - 2 cos’ \,, , leaves only the quadrupole 
term, Kz / K’ = sin2 8, co? qK , in its Fourier function @,I$). The 
simple trigonometric expression, sir? eK co? ‘p, , can be expressed 
as a linear combination of spherical harmonics of order two. As 
expected, the monopole contribution to the tune shift doesn’t ap- 
pear in Eq. (17). The final expression for the Fourier Transform of 
the tune-shift is now given as, 

N d3K ,ib.t,- b’b(K: + $)12V p: z2 ‘0 
tAvx) = B 162 A $ J 
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Once again, using the delta-functton approximation for the 
longitudinal component of the Gaussian number density (Eq. (19)). 
the integral may be cleanly separated into its longitudinal and 
transverse components. Hence, on evaluation, the average tune- 
shift for the hunched-beam. bunched-beam interaction is given by 
the expression, 

, 
ip’ (Avx) = ri % N&y - 5’$r’fi 7;, 

3 

This expression differs from the well known formula for :une- 
shift of two coasting beams [I] in two distinct ways: the presence 
of the longitudinal term, CT,, which iu not unexpected for a honched- 
beam of finite cxtcnt; and the energy dependence given by y - s/2. 
In the near future. a careful study of the experimental evidence will 
be undertaken to hctter understand these results and their conse- 
quences. Also, since WC are calculating the averaged tune-shift of 
all the particles tn the beam rather than the tune-shift of a single 
particle, we expecl some of the differences noted above, 

Discussion and Plans for the Future 

In this paper we have outlined the main ideas behind our 
microscopic approach lo the bunched-beam, bunched-beam mterac- 
tion. We have calculated two quantities of interest for bunched- 
beams, namely the average emittance growth and average tune shift 
due to beam-crossing. 

We prcfcr to work in a frame whcrc one of the colliding 
bunches is at rest, and the other highly relativistic. In this frame 
several mathematical simplifications and physical insights are pos- 
sible. In particular, the awkward microscopic Lienard-Wicchert 
potential reduces to a managcablc form, and the Lorentz contracted 
nature of the highly relativistic bunch allows the Gaussian nature of 
the longitudinal component to be replaced by a weighted delta- 
function. In this way the final Fourier transform is separable, and 
readily evaluated. This simplification ts not possible for an infi- 
nitely long line charge. 

Our result for the emittnnce growth due to multiple beam 
crossing shows that for top RHIC energies this effect is not of 
concern over a ten hour beam lifettme (six crossing points per 
revolution). This is true even wtth thf,factor of 1000 coming from 
the 2’ /A factor for fully stripped Au ions. Marc importantly, 
our result for the average tune-shift for hunched-beam. bunched- 
beam interactions contains two factors not present in the standard 
formula [l]. These arc the longitudinal bunch si,c parameter, and 
the uncxpccted energy dependence. Further work is in progress to 
understand our result and the relation to ava~lahle data, 
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