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FINITE DIFFERENCE TIME DOMAIN MODELLING OF PARTICLE
ACCELERATORS

T. G. Jurgens, and F. A. Harfoush
Fermi National Accelerator Laboratory®
Batavia, llinois 60510

Abstract: Finite Difference Time Domain (FD'TD) modelling has
been successfully applied to a wide variety of electromagnetic scattering
and interaction problems for many years. Here the method is extended
to incorporate the modelling of wake fields in particle accelerators.
Algorithmic comparisons are made to existing wake field codes, such
as MAFTA T3.

Brief Review of FDTD

The FDTD algorithm is a finite difference solution of the time-
dependent Maxwell’s equations defined on a lattice of points which
discretizes a volume of space containing a scatterer. This is depicted in
Figure one. In order to compute the electric field value at a particular
grid point we apply Ampere’s law.
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Similarly for an magnetic field value we apply Faraday’s law.
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Wave propagation, scattering, and penetration phenomena are mod-
eled in a self-consistent manner by marching in time, that is, repeatedly
implementing the finite-difference analog of Maxwell’s equations. This
results in a simulation of the continous actual waves by sampled-data
numerical analogs propagating in a data space stored in a computer.
Space and time sampling increments are selected to avoid aliasing of
the continuous field distribution, and to guarantee stability of the time-
marching algorithm. Time marching is completed when the desired
steady-state field behavior is observed. Truncation of the computa-
tional domain is done by implementing absorbing boundary conditions.
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Figure 1: The FDTD Unit Cell

The FDTD code has been applied to a wide range of wave prop-
agation problems both scattering and coupling [1]. A good review of
the code and its applications is provided in [2]. Some of these areas
are outlined below. Given the demonstrated capabilities of the FDTD
code, this paper extends its scope of applications to accelerator physics.
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Many codes have been written for the purpose of modelling ac-
celerator physics. The MAFIA code T3, developed by Weiland 3] to
handle time varying fields in accelerators, is also based on a finite dif-
ference algorithm. It employs a stair step approximation of surfaces
with curvature in more than one orthogonal direction. The modelling
of thin wires with subcell radii is not implemented in the code.

Application to Accelerator Problems

Incorporating of the physics of the moving particle bunch into the
FDTD formalism is accomplished by altering Ampere’s law. A term
corresponding to the movement of charge is added to the right side of
the eguation.
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The movement of charge is modeled by exciting the FDTD grid at ap-
propriate spatial and temporal locations, given the desired path and
shape of the particle bunch. In our simulations, curved surfaces are
conformably modeled. Figure two illustrates the differences between
the stepped edge and contour representations of two dimensional ac-
celerating cavity. Accurate geometry representation is especially im-
portant in high field regions such as found at accelerating cavity nose
cones. In Figures three to seven the geometrical axis of symmetry is
located at a vertical ordinate of 45.
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Figure 2: Stepped Edge v.s. Contour Geometries

Line Charge Between Parallel Plates: The first and simplest
problem we have considered is a gaussian distribution of positive
charges travelling at relativistic speed (v == ¢) along the plane of sym-
metry of a 2-D smooth pipe. Since our model employs cartesian co-
ordinates, our 2-D problem is represented by two parallel plates. The
analytical analysis of the parallel plates geometry is similar to that of
the circular pipe, and predicts electric field lines to be transverse to
the beam and normal to the plate surface. The magnetic field lines are
also transverse to the beam and normal to the electric field. At v =—¢
no longitudinal fields are present. The magnitudes of the electric and
magnetic fields are equal. Our numerical solution is shown in Figures
three and four. The longitudinal F field component is not depicted
since it was found to be negligible. For these results, the bunch is
propagating in the positive x-direction. This initial simulation shows
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Fignre 3: Contonr Plot of E, in a Smooth Pipe
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Figure 4: Contour Plot of H, in a Smooth Pipe

the ability of the code to reconstruct the proper physics of the problem.

Excitation of a Two Dimensional Cavity: The next example
in our simulation is the excitation of an accelerating cavity by a gaus-
sian distribution of pusitive charges moving at the speed of light along
the plane of symmetry. Again a 2-1) model in cartesian enordinates
is used. Figures five and six are contour plots of the F, and I, field
components, respectively, which were excited by the passage of the
particle bunch along the beam pipe. The field plots show that the
accelerating mode of the cavity has been excited: the F field (capaci-
tance) of the cavity is concentrated near the nose cones, while the I
field (induetance) is maximum in the upper portion of the cavity. In
this simulation, the F, field components in the cavity were found to
be small.

The final simulation, illustrated in Figure seven, is the excitation
of an acclerating cavity in the same manner as reported above, with
the exception that the charge distribution’s path is off the plane of
symmetry. It is located so that the distance from the bottom plate to
the path is three times the distance from the top plate to the path.
The depicted results show the expected enhancement of the £ field in
the upper nose cone gap with respect to the lower gap.

Capabilities of the FDTD Algorithm

The advent of the contour integral approach has increased the va-
riety of structures that can be analyzed with the FDTD algorithm.
Within the past few vears FAl scattering from and coupling to objects
with thin slats, wires. curved surfaces, biological hodies, relativistically
moving surfaces and surfaces with nonlinear time varying parameters
have been investigated. Details of these investigations are summarized
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Figure 6: Contour Plot of H, in the Cavity

below. The contour integral approach is employed in the accurate
modelling of the object and is not related to the modelling of the
EM scatiering source. This implies that the successful modelling of
the above structures in particle accelerators is a straightforward ap-
plication of the contour FDTD method. The computational overhead
incurred in using the contour approach is small: it is proportional to
the surface area of the object for three dimensional structures and to
the houndary length for two dimensional structures.

Curved Surfaces: Until recently, all finite difference methods
approximated a curved surface with some degree of stepped edging.
The contour FDTD approach allows comformable modelling of curved
surfaces. As reported by Jurgens [1], this better representation of
the structure increases the accuracy of resulting field data, especially
near a surface.Objects with nonzero surface impedance have also been
modeled. The numerical analysis of other subcell physics phenomena,
such as surface roughness now appears tractable.

Wires: Beam pickups and monitors are structures which consist
of variously configured plates and wires located in the beam pipe and
connected to signal processing electronics usually by coaxial cables.
The plates, wires and ccaxial cables (including the dielectric insulator)
are all amenable to the contour FDTD method. Indeed, the FDTD
analysis of coupling to multiconductor bundles has been validated [5].

Thin Slots and Jaints: The contour FDTD method has also
been applied to the EM modelling of narrow slots and joints [6:. The
FDTD algorithm has accurately predicted field behavior in and be-
hind slots located in conducting screen. Complicated joints such as
the lapped joints were modeled. Slot and joint path length resonances
were observed. Particle accelerators are assembled from smaller pieces
and thercfore possess joints.
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Figure 7: Off Axis Excitation of E,

Biological Bodies: Biological materials have been analyzed us-

-

ing the FDTD algorithm |7
flexiblity of the algorithm in dealing with inhomogeneous ohjects. An

]- This application illustrates the extreme

arbitrary valuie for o, c and g can be assigned to each lattice cell, where
o, ¢ and jt need not be scalars. 1t is worthwhile to note here that the
contour FDTD algorithm is not restricted to metal ohjects 4

Moving Surfaces: In [8' it is shown that a surface moving at
relativistic speeds can be modelled with the FDTD code alter some
modifications. ‘The model was tested for uniformly moving mirrors
and vibrating mirrors. Even for complicated cases like scattering from
a vibrating mirror at oblique incidence the code was able to recon-
struct the proper physics of the problem. No system transformation
is used and the results are obtained directly in the observer frame.
This model provides a strong tool to study many interesting problems
where analytical solutions are impossible to obtain. A moving, dense
plasma front is generally treated as a moving conducting wall and can
therefore be modeled with this code.

Time Varying Parameters: The FDTD code also allows for the
modelling of wave interactions with media of time varying parameters.
Time varying parameters can occur for different reasons and it is im-
portant to know the effects they might have on wave scattering and
propagation. In {9 a study is made of waves scaltering from a planar
media having a time varying conductivity. To validate the numerical
results an analvtical approximate solutinn was derived. Both results,
numerical and analytical, were shown to be in good agreement. Apgain
this model makes it possible to study many problems, such as active
surfaces, that are not possible to solve analytically.

Summary and Future Investigations

I'his initial investigation examined the propagation of a line charge
through two dimensional structures. The two examples selected exhib-
ited the correct physics resulting from a beam bunch excitation. The
extension to three dimensions is straightforward. Considering the wide
capabilities of this code it is now possible to model accelerating cavi-
ties. beam monitoring devices and kicker magnets. We hope to address
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these topics in the near future as our needs for such a model becomes
more urgent every day.

References

[1 ] A. Taflove, K. R. Umashankar and T. G. “Val-

idation of FDTD modeling of the radar cross section of

Jurgens,

three dimensional scatterers spanning up to 9 wavelengths,”
IEEE Trans. Antennas and Propagat., val. 33, pp.662-666, June
1985.

| A. Taflove, “Review of the formulation and applications of
the finite-difference time-domain method for numerical modeling
of electromagnetic wave interactions with arbitrary structures,”
Wave Motion, vol. 10, no. 6, pp. 547-582, 1988.

I T. Weiland, “On the numerical solution of Maxwell’s equa-
tions and applications in the field of accelerator physics,”
Particle Accelerators, vol. 15, pp. 245-292, 1984.

] T. G. Jurgens, A. Taflove and K. R. Umashankar, “Confor-
mal FDTD modeling of objects with smooth curved surfaces”,
1987 URSI Radio Science Meeting, Blacksburg, Va., June 1987,

Al

experimental

B. Beker and K. S.
validation of induced

] K. R. Umashankar,
Yee, “Calculation
currents on coupled wires in an arbitrary shaped cavity”,
IEEE Trans. Antennas and Propagat., vol. 35, pp.1248-1257,
Nov. 1987.

Taflove,
and

A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush and K. 5.
Yee, “Detailed FDTD analysis of electromagnetic fields penetrat-
ing narrow slots and lapped joints in thick conducting screens”,
IEEE Trans. Antennas and Propagat., vol. 36, no. 2, pp-247-257,
1988.

~

i D. M. Sullivan, O. P. Gandhi and A. Taflove, “Use of the finite
difference time domain method in calculating EM absorption in
man models”, IEEE Trans. Biomed. Eng., vol. 35, pp-179-186,
1988.

[8 i ¥. A

merical technique for analyzing electromagnetic wave scat-
“ering from moving surfaces in one and two dimensions,”

Harfoush, Taflove and G. A. Kriegsmann, “A nu-

IEEE Trans. Antennas and Propagat., vol. 37, no. 1, pp.55-63,
1989.

[9 | F. Harfoush, G. A.

ing of electromagnetic waves by a material half-space with

Kriegsmann and A. Taflove, “Scatter-

a time-varying conductivity”, 1987 URSI Radio Science Meeting,
Blacksburg, Va., June 1987.

PAC 1989



