
Differential algebras without differentials:

an easy C++ implementation.

LEO hfICIIELOTT1
I~‘rrmilah’, P.O.Box 500, Batavia, 11, 60510

1 Introduction.

In t,hr firld (,I’ real numbrrs, R, diffrrrntintion is an analytic operation rc-
qu~nng the evalnatrun of a limit In non-Archimrdran field extrnsions of R,
such as Robinson’s [!1,53 *R, Iff (1 wrntiation may br definablr as an arith-
metic operation. Hall iP,7] d rmonstratrd the practicality of this observation
hv implpmrnting t,he proredurp on R romputer. Anv problem combining
diffrrentintion with numrrical analysis scrms ripe for this idea; applications
run thr gamut from solving functions with Newton’s method to calculnting
Lynpunw cxpnnrnts for thr orbits of a dvnamical wstrm. t+rz has intro-
duced the method into arrrlerntor applications and has hrroicallv written a
t‘OR’Ilti\N pre~rompilrr, DA, whlrh ran br 114ed to dirrrentiate automati-
rnllv the nnnlirwar mappings nssoriatpd with tracking programs and thewbv
construct their pr~lvnrm~inl approximations [2,3] Forrst. Rerz, and Irwin RI-
rradv hnvr shown how this capability can be ~1x4 to find normal forms for
thr Hnmiltc~n~ans Nhirh these mappings rrprrsent.[fi

In view of thr importanrr of this trchnique, It is unfortnnat? that some
dwrription? of t hr basic idras still leave a number of readrrs confnsul as
to why it actuallv works. The confusion which nrisw ~~suallv is connertrd
rithrr with rmplnving the nntion of “diffrrrntinl” or with the connection to
‘H, and its implied marhinrry of ultrafiltrrs. In fact, automated dlfferenti-
allon ran br mntlvatrd and explained rathrr plainly without any referen??
to infinltrsimals or diffTr?ntiats whatsorvrr We shall describp one possible
approach in this paper.

‘l’hr method whirh we shall USP will suggest its own implemrntation. 110~
FYPI, FOKI‘HAN is not the rn<~st natural tangrlagr in which to carry it out.
In thr swrmd section WP shall describe an almost trivial implementation us-
ing C * * !1111 (Indwd, one of the motivations for writing this paper is to
prrsuadr militant FORTRAN rxtremists to invrst thr four or five days “PT.
essary to learn this powerful and rasy langoagr.) Take herd, however. that
what WP dpsrribr brlow is only a stripped-down implementation, written in
thrrp days, of difT?rential algpbra’s most essential featuws; it IS not ns robust
as end does not contain the battery of tools awilnblp in Ben’s DA package,
thr pr<doct of a significant amount of work.

2 Prolongation structures, pro-numbers, and
differential algebras.

FVlth anysmor~th function. f : II” b H, we associate its “prolongation strrrc-
turr,” GI “prolongation” for short.’

i (f, r.f v r-/, TV c/, .)

Thr brnckrts i..) indicate an ordered set of objects of different kinds, as
opposrd to thr romp~nrnts of a vector. which are objects of thr same kind.
‘I‘hr first mzmhrr I)F f is thr function f itsrlf, thr srrond is its gradient. the
third 1s its hrssian, and so forth. Evaluating R prelongation nt some value vf
its argumrnt SRV. iL i(z) yields R new structure which WP shall call,
for lack rrf anvt hing brttrr, a “pro-numbrr.”

ci P(l) (f(z), Cf(z), V-rf(z). VVVf(z), . ..) - (n,a,a.. ..)

‘l‘hr first rr~rrnbrr raf 6 is a rral number, its srrond mpmbrr is n singly indexrd
array (>I rrals, its third is a doubly indexed array of reels, and so forth. &“r
shall call thr numhrr of indices associated with R mrmbrr its “ordrr.”

Now, Irt the svmbol @ rfprrsent a binary operation on smooth functmns:
addition, multiplication, convolution, or whatever. We cnn e.xtend its domain
ofdrfinitinn to include prolongatmns in a natural manner.

‘Opcrnlrd hv thr llni,,rsitir. Rrwarrh Awnrintinn, Inc. undrr cctntrnrt with thr I’ S
I)rpnrtmr”l sd tmrrg,.

“l’tl~s ntljrct rnnv havr R mow accrptrd IIR~C; if so, I do not know what
it i5 Rlv calling it x pr<dongation is bawd nn XII abuse of terminology
in(r(wlurrrl on pagr 3 ofrrfrrrnw [lj Th c word alrrady has srvrral mrnnings,
drpwxiing on th? mnthrmntical rontrxt, so I do not ronsidrr it very harmful
tn add one more.

j@pb fTs- if@g, ~(/Sgj, cr(f@g), . ..)
,

This definition assures thnt information about the derivatives of functions
propagates rnrrcrtlv through the opwations. ThP simplrst of thrse is nddi-
tion Let f and 9 be two functions xvith prolongations i and i. Then we
define the sum, / t jr, as follows

i’Y- f-;‘y- (f tg, Cf ,Tg, TTC/+Y-rGg, ,.-)
I)rvelopment of product and quotient 0pt,ratirxns is a littlr m~)r~ complicated
but follows straightforwardlv from rrp?atrd appbration of the chain role.

Tug) YCf t F!J

v T(fY) !dr Cf) t f(T V’9) ’ (Cg)(-i-/l t (Tf)(TY)

rif!s) (I/gjCf (f/.?j~Y
r- V(f!s) (l/Yjr VI (f!s2)T vi7

ir/2U(~'f)l~y) I F'9)F-/!! t P//9Rj(Cg)(ry:b

Upon evaluation, these anatytlr identities beromP rules for do-
ing arithmetic with pro-numbers. Id i j(z) (n,a,a, _. .) and

5 = B(z) ~ (h, b. b. :I bP two arbirarv pro-numbrrs. Thr rulrs for ron-

strutting their sum, i 7 & t b, product fi _ ib, and quotient, i :- i/b arr
obtained directly from the abow ldentitips

n-a-b, spatb, a-attj
p- ab. p - ab t ba, p:bakab~abcba,

q -- a/b, p -. (1jb)a. (a,‘b’)b, i (l/b)% (l/b’)(ab+ bg) (‘)
+(2n/b3)bb - (a/b2)b,

A few observations:
(a) Pro-numbers along with their arithmetic operations form an algebra
which obrgs the same commutativr, nssnriativr, and distrihutivr laws as
real numbrrs. There is R “zero” and “unit” of this algebra: if we define
i-(1,&@ ,...)andc-(O,O,O ,...),th en it is easy to co~~iirm that fur any

6, iL t 0 -= h and i 6 : d. IJntike rrals, howrvrr, the algebra is not an in-
tegral domain, much less a field: not all non-zrro elements can he invrrted:
the inverse ofany pro-number whosr first member is (th? real number) zero
is not defined. Its exact algebraic classification is a rommutative ring with
identity.
(b) For R pro-number to be interprelnblr as thr evaluation of a prolongation,
all its multiGindexed members shnuld br svmmrtric under permutation of
their indiws. llo~~rv~r, it is possihlr to cnlargr thr set of prwnumbws by ad-
mitting non-symmrtrir mrmhrrs which rlbry th? same nrithrnrtir ~111~s. Since
permutation symnwtrv is presrrvrd b,v the arithrnrtir opwations, thr sym-
metric pro-nombws form an invariant subalg?bra of this larger pro-numbrr
algebra.
(c) A nice test of division is to note that for all invertible &.,
I;/6 (l:O.O, ..) i.

Of COUISP, any implementntion of this algebra must be truncated. In tight
of this, an important featurr of the ariihmrtir rules is that the rnIh nwmhrr
of thr result of an opcaration drprnds only on mrmbrrs of the operands in
positmns < m. For example, p drprnds on a, b, a, and b, but not on ‘2, b, or
A~V ether members of higher ordrr This means thnt if w tronratr the pro-
number algebra at various orders we obtain new algebras, the “differential
algebras,“ that obry the same commutative, associntivr, and distribotivc
laws as thr original. (‘I’hrsc are rrlatrd to thr “II. algrbras in tl~rz.[J!)

Sopp~~w WP truncate at the first order (second member), SO that ?i (a.aj
is now a generic rlrment of thP algebra. If n 0, then, by the rule for
multiptirntion, d2 (0. 0) i,. Thus, thr trunratrci algebra possesses <.I,.-
ments nhosr squaw is (h t c tronratrd) BPT<~. This is nnc of the fundamental
prop?rtirs oi an “infinitesimal.“ If WP truncate at the srwnd ordrr, thu,

CH2669-O/89/0000-0839$Ot.G0~1989 IEEE

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989

il (0, ~),a) weld br the 6xm of a dilfcrrntial clrmrnl. llowevrr, an cl?-

rn~nt <,fthr f<~rrn 0 (11, a, ,I), with a / I). would sntisfv 2” i, while ri2 / 6,
whlrh is not at all thr sarnc thing. If UC truncate the prolongation algrhra
at rrrdrr m, thrn any plemrnt, iL. whose first mcmhrr is zero will satisfy
~‘“‘L n. Rather than calling these “infinitesimals,” we shall refer to them
as “nilp~~trnL” rlrmrnts 2 Therr are no nilpotent rlemrnts in thr full proion-
gaticrn alg~hra, with its infinitv of mrmhrrs, they appear whrn WC truncat?
operatir,ns at some finilr urdrr

Rv rrlwated USP of Lhr arithmetic operations, we can define rational func-

tlnns of prol,~ngal~ons ‘I’hrse can he Pxtrndcd to transrendental functions ~
C-OS(U), rxp(ri), and so forth ~~ either using a power series, as in refrrcnce [S],
or hv th? follouing approach I,rt u : R” + R and g : R + N be Functions,
w,lth diffrrcnt domains, and consider thur concatenation, h(~) :- g(u(z)).
Since h : H” + 1(, its domain IS appropriate for thr same dimension of pro-
longation a< u We shall rxtcnd the domain of g by defining g#(C) - h. (In
prinriplr, it sh,,uld not hr nrr~ssary to inwnt a nrw symbol for this fxtendrd
function; examining the typr of thr argument should resolve ambiguities.
Nonrthrlrss, we shall let g# rrpresrnt rxtrndcd g to avoid confusion.) Its
mcrnhrrs are ohtaint-d by using chain rule O~CP again.

Tig(u)j S’C”) r’”

r ~lS(~)l g”(U) (‘u)(Tu) s’(u) r -c’u

As with the arithmetic operations, upon evaluation thrsp rules translate into
drfinition4 for transcrndpntal functions of pro-numbers. For any 6 WP have

g#(hl h, whrrr

h g(n), h y’(n)o. ; g”(n)aa t y’(a) a,

For examplr, for g . rns we have,

ros’/(rj) (cos(a), -sin(o cos(a)cu-- sin(a .,.) (2)

while for g rxp WC would have.

cxp#((d) ie”, r”u. @(aa t :) - ’ ..)

A special sPt of prolongations are obtained from projertions onto the co-
ordinates. \vc shall denote these by ik; their pro-number evaluations are
given hv

ir(z) 1 (zk,e,.D,...j (.(3)

uherr thr components of e* are (e*)i 6,k, and all members of ih vanish
hwnnd the first order. Notice that the second member is indeed the gradient
of thr associated projector. ‘fhc-se special elements generalize the notion of
“varixhle” and are just what is rerluirrd to initmliar a numrriral computation
r)F drrivatiws as WC *hall SW hrlow

3 An implementation in C++.

The Importance of the pro-mlmher algebra and analysis, or its truncated
cnuntrrparts, is that they provide a mwhanism for propagating drrivatiws
through arithmetic operations, which are the most complicated things that
crlmputrrs ran artuitlly do with nomhers, and function rnlls. In this way, dif-
frrrntintion brromps an arithmrtir, rather than analytic, prorr~lorr, thrrehv
rrndrring il appropriate for automated rompntation. Suppose, for example,
that onr wants to cvaluat? thr derivatives of

g(7. y, i. 1) = c”s(2~~y~) 4 2 CXP(Zl/Z) ~ 3y2;

at some parlirular values of its arguments, say at Z 1.54, y 1.17,
z 0 35. and i 1.59. Rather than analyticallv writing these derivatives
and then rvalrmting or numerirrdly taking finite differences to approximate
differentiation xv- could proceed by using “differential” elgchra variables.
The calrulation is initialiard hy setting

i (1.54,p,,n,. .), c- (1.17,~2,1j ,...), (4)

i (0.35, e3, n,..), i - (1.59,e,, r& .) (5)

and procwds by evaluating g#(;, 9, i, i), in thr process of which WC obtain
not only Ihp valor of th? hlnction but its derivatives as well, since they aw

Z\C’r have not introduced an ordering within which the nilpotcnts are
“small ,- as is done in the firlds *N of Robinson or No of Conway.[9,5,4] Rcrs
h,as removed this drficiency by defining a lrxicographic ordering scheme, nnd
shown that thr connection with true differentials proceeds as you would ex-
pect. (Howrvrr~ the resulting ordered algebra is still not a field. Nor do
theorems proven in the algebra automatically translate into theorems in H,
as is the casr with ‘R.)

propagatpd thrnugh the computation. These arr thrn ohtainrd by wading
the mrmhers of the rrsult.

Imaginr a programming languagr which contains pro-nurnbrrs as n type of
variahlr like r&s, intrgrrs, or complex variables nnd whosr compiler
recognizes arithmetic operations on these variahl?s as WPII as provides the
standard transcendental functions. A program for carrving nut the above
computation might contain stntrmrnts ltkr th? following:3

nstd x. y. z, t, g; // Illustrative
// program

x.astVariable(-1.64, 0 1; // ssgment.
t.satVariable(1.69, 1 1;
y.sstVariabls(-1.17, 2 1;
z.setVariabla(0.36, 3 1;

g = cos(2.0*(x*x)*(y-y*y))
+ 2.0*exp(z*t/x) - 3.0*y*y;

The first line drclar~s the varlahlrs to he pro-numbers. the name of th?
declared tvpr is netd , for “non-standard,“4 Thr setVariable stat?mrnts
which follow simply initialize thrsr variablrs to their desired values and tell
the program the index which is to he associated with each; they implemrnt
the assignments shown in Eq.(5) (Th e ordering is arbitrary; I have made
t follow z just to he perverse. It is convenient lo begin indices in C and
CI-t at 0 rathrr than 1, but this is not R n~ccssarv restriction.) The final
statement will evaluate not only thr iunction hut its derivatives as well.

Now, no languages possess nstd type variables as part of their basic strnc-
lure. Howwrr, somr modrrn. more powerful languages, like C t t or Ada,
allow one rffectivelg to enlarge the language by defining new “classes” of
variables. Loosely speaking, R class is rrrded in C+ t by sprcifving the data
peculiar to it snd the functions and operations which can access those data.
In partirolar, the C f 1 class nstd is partially drfinrd by the following user
interface:

overload cos ; // n..itd
overload sxp; // Intsrfacs

class nstd C
double f ;
double di [DIMENSION 1 ;

// Line 6

double ddf[DIMENSION 1 C DIMENSIDB 1 ;
public:

nstd() ;
nstd(double 1; // Line 10
void satVariabls(double, int 1;
friand nstd opsrator+(nstdk, nstdk 1;
frland nstd operator-(nstdk, nstdk);
friand nstd operator-(nstdk 1;
friend nstd operato++(nstdk, nstdk 1; // Line 16
friend nstd operator/(nstdk, nstdt);
friend nstd cos(nstd);
friend nstd axp(nstd 1;

) ;

To saw space, I’ve Irunratcd at the srrond orrlrr, inclildrd only two tran-
swndcntal functions, and olhrrwisr shcrtrnrd thr class dpiinition Rowrver,
enough remains to illustrate thr ideas brhind thr inlplemrn(atil,n. Linrs 5-7
describe the data approprmte to a nstd variahlr: a dwhlr precision real,
vector, and matrix -~ all of which correspond to sa,ving that h = (a. a, CZ).”
The siee of the arrays is contained in a macro variable, DIMEBSION, which is
defined by thr user prior to compilation. Thrsr linrs comprise the “private”
part of Ihr declaration; thr “public” part that follows lists the functions and
operators whirh WC allowed to access these data.

When the C++ compiler corncs to a nstd vrwiable declaration in an ap-
plication program it will allocate enough memory to accomodate the data
declared in the class definition. Further, it will initialize these data accord-
ing to rules specified in the “constructor” function declared in Line 9. The
constructor which 1 use simply initializes everything to zero.”

31 hope these program segments are transpnrent wough to make this
section readable without C t t expertise. Nonetheless, those who have used
C++ undouhtedlv will undrrstand the exwnplrs better.

‘This designation is probshlv R mistake, in light of my reluctance to call
the nilpotent elements differentials.

‘This is easily extended; arrays in C tin can have an arbitrarily large num-
her of indices.

6For the record, FOBALL is not a part of the C - - language; it is a macro 1
predefined to make subsequent programming easier and more transparent.

840

PAC 1989

nstd::nstdo i
int i.j;
f = 0.0;
FORALL C

dfCi1 = 0.0;
FORALL ddf[il[]l = 0.0;
>

)

Starting R calr~~lat~r)n is done with the sstVariable (public) member funr-
tinn. which implrmrnts thr oprraticn shown in E:q.(3) and Eq,(5).

void nstd::sstVariabls(double x, int 1) {
int i,k;
f = x;
FORALL <

dfCi1 = 0.0;
FORALL ddf[ilCkl = 0.0;
1

dfCj1 = 1.0;
1

flinnrv opwatlons, such as multiplication or addition, are definrd for these
rlassrs bv “ovrrloading” the arlthmrtic svmbols, whirh is accomplished bv
dt+ning rorrrsponding mrmbrr functions for thr class. For rxamplr. th?
mrmbrr iunrtlr>n operator*, which is d~rlart~cl in Line 15 and is mrnnt to
implrmrnt multiplication. is wnttrn (tronratrd at srrond nrdrr) as hollows.

nstd oparator*(nstdt x, nstdl: y) {
mt 1.j;
nstd z;
2.f = X.f * y.f;
FORALL C

Z.df[ll = (x.f * y.dfCil 1 + (y.f * x.dfCil);
FORALL

z.ddfCilCjl = (y.f * x.ddfCilCjl)
+ (x.f * y.ddfCil[]l 1
+ (x.dfCil * y.diCjl)
+ (y.df[il * x.dfC~l I ;

1
return z;
1

The operator/ function is written similarly. Ry romparing with Eq.(l) we
SPC that thrsr functions are nothing more than R literal translation of the
arithmetic roles. ‘l‘hrw is no need for table Iookups or explicit computations
of mrmory lorations C’ I t takes car? of thaw drtails automntirallv

Of roursp. the applications prograrnmrr nrithfr oeuis nor wants to know
hrlw operator*, nstd::satVarlabls, nstd::nstd or any othrr member
function is implrrnc~ntrd Hr onlv ~arrs that if x, y, and z SUP dpclarrd
to be nstd variablrs in his program, then a statrmrnt lik? z = x*y will be
intrrprrtrd rorrrcttv and prrform as expected. Onlv the int?rfar? is required
tn do that; the “toolkit” which contains the implementation is rompl&zly
transpnrrnt, buried in R librnr,y with which hP will eventually link his pro-
grams Furt.hrr. if the interfacr is containrd in a file, SRY nstd.hxx, then the
nppllrntions program need only contain the linrs

#define DIMENSION 4 // or 2 or 6 or whatever
#include “nstd.hxx”

to allow, thr USC’ rJnst.d variables.
Ilv itwlr, operator* spwifirs thr rulr for multiplying two nstd vnriablrs,

but in thr "Illustratiw program .wgmcnt” written above we multiplied nstd
vannblrs bv constants, 2.0 and 3.0. This workrd properly becausr of the
srcond construrtor function, drclarrd in Linr IO of the intwfa’arr. Rerausr
thr class cuntflins thr munher nstd(double) the C i I compiler will auto-
matically cnnwrt BIIY real (i.e., type double) constant or variabtr appearing
in an pxpwssion with nstd variables to its nstdconnterpart. This avoids the
nrrrssitv (1) cf writing separate multiplication routines for all possible com-
binations of variahlrs, nstd opsrator*(double&. nstd&), and the likr,
or (‘2) of drrlaring all variables in a program as type natd. The constructor
is irnplrm~nwd as one would expect,

nstd::nstd(double x) i
int l,j;
f = x;
FORALL <

tiCi = 0.0;
FORALL ddfCilCj1 = 0.0;
3

1

but, onw again, these details are transparent to thr user.
Finally, since C t t dors type checking, WC ran overload functions as well

as operators. This allows us, for example, to define a nstd member function
called “cos” which prrforms exactly as specified in Eq.(Z).

nstd cos(nstd x) i
double sn,cs;
int i,j;
nstd w;
8n = sin(x.f 1;
C8 = cos(x.f 1;
a.f = cs;
FORALL <

a.dfCil = - sn*x.df[il;
FORALL

a.ddf[i][jl = - cs*x.dfCil*x.df[jl - an*x.ddf[il[jl;
?

return a;
)

The othrr elementarv transrrndrntnl funrlions are extended in a similar
Tlil”“e.

And that rrallv is all thrrr is to it ‘I‘hr result is that nstd varinblrs act
as though they were part of thr original language: thr compiler knows how
to initialize them arithmetic operations 11s~ t hP ~amr wmb,,lc, transcrn-
dental functions are called by thrir SR~C names, and type conversion takes
place automatically in mixed variable expressions Of course. there is no
reason to stop; one can go on to dwrlop toolkits for ratlonal, polynomial.
lorsntzfroup, beamline, obasrvabls, quatemion, sxtsnsionFisld, or
any other mathematical object which ma? he useful. Using (:+t , or other
object-oriented languages, even changes the approach to problem solving.
Rather than immediately asking, UHow do 1 write the program?” one first
steps hack and asks, “What objrcts are most convenient for expressing the
problem and obtaining a solution. ?” Toolkits created to aid the solution of
one problem are then easily rwsahlr and appear naturally in later programs.
Ideally, given some lwel of communication among a group of users. toolk-
its can be shared thereby multiplying the group’s productivity. In short,
the arrival of object-oriented programming (which is what this amounts to)
represents a significant breakthrough of almost limitless possibilities.

References

[21
[3l

!41

I.51

16:

171

[RI

191

1101

Robert L. Anderson and Nail Il. Ibragimov. Lie-Backlund Transforma-
twns in npplicnlions. Society for Industrial and Applird Mathematics,
F’hitadclphia, Pennsylvania. 1979. SIAM Studies in Applied Mathemat-
ics.

Martin R~rz Nurlrar Inatrurnenls and Mcfhods, A258:431. 19R7.

Martin Berz. Differential algebraic description of beam dynamics to
very high orders. Part:& Accelerators. 24(2), February 1989. to he
published.

John H. Conway. On ~Vumtwrs and Gnmrs. Academic Press, New York,
1976.

Martin Davis. Applied Nonstandard Analysts. John Wiley Ilr Sons, New
York, 1977.

EtiPnne For&, Martin Berz, and John Irwin. Normal form methods
for romplicatrd periodic systems: R complete solution using differential
algebra and lie operators. Parltcle nrc&nalor~, 24(Z), February 1989.
to hr published.

L. II. Rail. The arithmetic of differrntiation. Mathematics Magazine,

.59:2X- 282, 1986.

L B. Rail. Automatic differentiation: techniques and applications. In
Lrcture NO&-J in Compulcr Scienre No. 120, Springer-Verleg, 1981.

Abraham Robinson. Non-Standard Analysis, Sludws tn Logic and the
Foundatzona of Xiathematacs. North-Holland, 1966.

Hjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, 1986.

841

PAC 1989

