© 1989 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

Differential algebras without differentials:

an easy C++ implementation.

LEO MICHELOTTI
Fermilab®, P.O.Box 500, Batavia, IL 60510

1 Introduction.

In the field of real numbers, R, differentiation is an analytic operation re-
quiring the evaluation of a limit. In non-Archimedean field extensions of R,
such as Robinson’s [9,5] *R, differentiation may be definable as an arith-
metic operation. Rall [8,7] demonstrated the practicality of this observation
by implementing the procedure on a computer. Any problem combining
differentiation with numerical analysis seems ripe for this idea; applications
run the gamut from solving functions with Newton’s method to calculating
Lyapunov exponents for the orbits of a dynamical system. Berz has intro-
duced the method into accelerator applications and has heroically written a
FORTRAN pre-compiler, DA, which can be used to differentiate automati-
cally the nonlinear mappings associated with tracking programs and thereby
construct their polynomial approximations.[2,3] Forest. Berz, and Irwin al-
readv have shown how this capability can be used lo find normal forms for
the Hamiltonians which these mappings represent. |6’

In view of the importance of this technique, it is unfortunate that some
descriptions of the basic ideas still leave a number of readers confused as
to why it actually works. The confusion which arises usually is connected
either with emploving the notion of “differential” or with the connection to
*R, and its implied machinery of ultrafilters. In fact, automated differenti-
ation can be motivated and explained rather plainly without any reference
to infinitesimals or differentials whatsoever. We shall describe one possible
approach in this paper.

The method which we shall use will suggest its own implementation. How-
ever, FORTRAN is not the most natural language in which to carry it out.
In the second section we shall describe an almost trivial implementation us-
ing C++ {10] (Indeed, one of the motivations for writing this paper is to
persuade militant FORTRAN extremists to invest the four or five days nec-
essary to learn this powerful and easy langnage.) Take heed, however, that
what we describe below is only a stripped-down implementation, written in
three days, of differential algebra’s most essential features; it is not as robust
as and does not contain the battery of tools available in Berz’s DA package,
the product of a significant amount of work.

2 Prolongation structures, pro-numbers, and
differential algebras.

With any smooth function, f : R"
ture,” or “prolongation” for short.!

» /1, we associate its “protongation struc-

[=(f, VI, VY VOCS,)

The brackets {...} indicate an ordered set of nbjects of different kinds, as
opposed to the components of a vector, which are objects of the same kind.
The first member of f is the function f itself, the second is its gradient, the
third is its hessian, and so forth. Evaluating a prolongation at some value of
its argument say. @ = f(r) —— yields a new structure which we shall call,
for lack of anvthing better, a “pro-number.”

a= f(z) = (f(2), Vf(z), YVf(2), YVVf(z), ...} =

(a,a,q,...)

‘The first member of @ is a real number, its second member is a singly indexed
array of reals, its third is a doubly indexed array of reals, and so forth. We
shall call the number of indices associated with a member its “order.”

Now, let the symbol ® represent a binary operation on smooth functions:
addition, multiplication, convolution, or whatever. We can extend its domain
of definition to include prolongations in a natural manner.

*Operated by the Universities Research Assnciation, Inc. under coniract with the [.S.
Department of Energy.

""This object may have a more accepted name; if so, I do not know what
it is. My calling it a prolongation is based on an abuse of terminology
introduced on page 3 of reference [1]. The word already has several meanings,
depending on the mathematical context, so I do not consider it very harmful

to add one more.

fei=fog- 1oy (g, VV@g), ...)

This definition assures that information about the derivatives of functions
propagates correctly through the operations. The simplest of these is addi-
tion. Let f and g be two functions with prolongations f and g. Then we
define the sum, f t+ g, as follows.

f+a=fVg=(f+9 Vi1 Vg VVf+VVg ...)

Development of product and quotient operations is a little more complicated
but follows straightforwardly from repeated application of the chain rule.

Y(f9) gvi+fvg
Y Y(f9) (VY4 f(VTg) (Vg)(TS) + (V) (V)
V(flg) = (Vg)¥f - (f/9))Vg
Y V(f/9) (1/9)V V1 - (f/9*)¥ Vg
(/g W(TH(Ta) 1 (Te) (V) 1 (2//9°)(T9)(Tg)
Upon evaluation, these analytic identities become rules for do-

ing arithmetic with pro-numbers. Let & — f(z) ~{a, aa, ...) and
b= §(z) = (b,b,h,...} be two arbirary pro-numbers. The rules for con-
structing their sum, § = a + b, product p = &E, and quotient, ¢ = &/I; are

obtained directly from the above identities.

s=a-~b s=a+bh s=a+b ...
p = ab, p= ab+ba, p=batab+abba,
g=a/b, g (1/8)a (/B g = (1/b)a - (1/6%)(ab+ba) (V)

+{2a/b%)bb - (a/b2)b,

A few observations:

(a) Pro-numbers along with their arithmetic operations form an algebra
which obeys the same commutative, associative, and distributive laws as
real numbers. There is a “zero” and “unit” of this algebra: if we define
i={1,00...)and 6 = {0,0,0,... }, then it is easy to confirm that for any
G, 4+0=2aand 1 -a=a Unlike reals, however, the algebra is not an in-
tegral domain, much less a field: not all non-zero elements can be inverted:
the inverse of any pro-number whose first member is (the real number) zero
is not defined. Its exact algebraic classification is a commutative ring with
identity.

(b) For a pro-number to be interpretable as the evaluation of a prolongation,
all its multi-indexed members should be symmetric under permutation of
their indices. However, it is possible to enlarge the set of pro-numbers by ad-
mitting non-symmetric members which obey the same arithmetic rules. Since

[

permutation symmetry is preserved by the arithmetic operations, the sym-
metric pro-numbers form an invariant subalgebra of this larger pro-number
algebra.

(¢) A nice test of division is to note that for all invertible a,
ala = {1,0,0,...) = 1.

Of course, any implementation of this algebra must be truncated. In light
of this, an important feature of the arithmetic rules is that the m!'® member
of the result of an operation depends only on members of the operands in
positions < m. For example, p depends on a, b, a, and b, but not on a, b, or
any other members of higher order. This means that if we truncate the pro-
number algehra at various orders we obtain new algebras, the “differential
algebras.” that obey the same commutative, associative, and distributive
laws as the original. (These are related to the 1, algebras in Berz.[3])

Suppose we truncate at the first order (second member), so that @ == (a,a)
is now a generic element of the algebra. If @ - 0, then, by the rule for
multiplication, @® = {0,0) = (. Thus, the truncated algebra possesses ele-
ments whose square is (the truncated) zerc. This is one of the fundamental

properties of an “infinitesimal.” If we truncate at the sccond order, then

CH2669-0/89/0000-0839301.00©1989 IEEE

PAC 1989

@ = {0,0,a) would be the form of a differential elemeni. However, an ele-
ment of the form @ = (0,a,a), witha # 0, would satisfy a® - 0 while @2 # 0,
which is not at all the same thing. If we truncate the prolongation algebra
at order m, then any element, @, whose first member is zero will satisfy
0. Rather than calling these “infinitesimals,” we shall refer to them
as “nilpotent” elements.? There are no nilpotent elements in the full prolon-

amt 1 4

gation algebra, with its infinity of members; they appear when we truncate
operations at some finite order.

By repeated use of the arithmetic operations, we can define rational func-
tiens of prolongations. These can be extended to transcendental functions —
cos(@t), exp(it), and so forth — either using a power series, as in reference {31,
or by the following approach. Let u: R™ — R and g: R — R be functions,
with different domains, and consider their concatenation, h(z) = g{u(2)).
Since h: R™ -+ R, its domain is appropriate for the same dimension of pro-
longation as u. We shall extend the domain of g by defining g¥ (@) = h. (In
principle, it should not be necessary to invent a new symbol for this extended
function; examining the type of the argument should resolve ambiguities.
Nonctheless, we shall let g# represent extended g to avoid confusion.) Its
members are obtained by using chain rule once again.

Vig(u)

] g'(u)Vu
v Vig(ul)

¢" (W) (Vu)(Vu) - ¢'(w) ¥V Vu

As with the arithmetic operations, upon evaluation these rules translate into
definitions for transcendental functions of pro-numbers. For any @ we have

g#(a) = b, where
bogla). b ga)a. b-
For example, for g == cos we have,

cos#(a) = {cos(a),

¢"(a)aa + g'la)a,

(2)

—sin(a)a, - cos(ajaa--sin(a)a, ...)
while for g = exp we would have,

exp¥(a) - {e®, e%a,

e’laa +a), ..

A special set of prolongations are obtained from projections onto the co-
ordinates. We shall denote these by z,; their pro-number evaluations are
given by

{3)
where the components of e, are (e;)i = 8ix, and all members of z, vanish
beyond the first order. Notice that the second member is indeed the gradient
of the associated projector. These special elements generalize the notion of
“variable” and are just what is required to initialize a numerical computation

#p(z) = (2n,€. 0,0

of derivatives, as we shall see below

3 An implementation in C4+,

The importance of the pro-number algebra and analysis, or its truncated
counterparts, is that they provide a mechanism for propagating derivatives
through arithmetic operations, which are the most complicated things that
computers can actually do with numbers, and functjon calls. In this way, dif-
ferentiation becomes an arithmetic, rather than analytic, procedure, thereby
rendering it appropriate for automated computation. Suppose, for example,
that one wants to evaluate the derivatives of

glz. v, 2. 1) = cos(22%y%) + 2exp(zt/z) — 3y%;

at some particular valucs of its arguments, say at z = 1.17,
z = 0.35, and t == 1.59. Rather than analytically writing these derivatives
and then evaluating or numerically taking finite differences to approximate
differentiation w= could proceed by using “differential” algebra variables.
The calculation is initialized by setting

(o 154,e,0,. 0, §= (117, ¢, 0,...), (4)
£ (0.35,e5,0,..), f = (1.59,¢,0,...) (5)

and proceeds by evaluating g# (2, 3, 2,£), in the process of which we obtain
not only the value of the function but its derivatives as well, since they are

1.54, y -

2We have not introduced an ordering within which the nilpotents are
“small,” as is done in the fields *R of Robinson or No of Conway.[9,5,4] Bers
has removed this deficiency by defining a lexicographic ordering scheme, and
shown that the connection with true differentials proceeds as you would ex-
pect. {However, the resulting ordered algebra is still not a field. Nor do
theorems proven in the algebra automatically translate into theorems in R,
as is the case with *R.)

840

propagated through the computation. These are then obtained by reading
the members of the result.

Imagine a programming language which contains pro-numbers as a type of
variable like reals, integers, or complex variables - and whose compiler
recognizes arithmetic operations on these variables as well as provides the
standard transcendental functions. A program for carrying out the above

computation might contain statements like the following:?

// Illustrative
// program

nstd x, v, 2z, t, g,

x.setVariable(~-1.54, 0 }; // segment.
t.setVariable(1.59, 1 };
y.setVariable(-1.17, 2);
z.setVariable(0.35, 3);

g = cos(2.0%(x*x)*(y=y*y))

+ 2,0%exp{ z*t/x) - 3.0%y+y;

The first line declares the variables to be pro-numbers: the name of the
declared type is nstd , for “non-standard.”* The setVariable statements
which follow simply initialize these variables to their desired values and tell
the program the index which is to be associated with each; they implement
the assignments shown in Eq.(5). (The ordering is arbitrary; I have made
t follow z just to be perverse. It is convenient to begin indices in C and
C++ at 0 rather than 1, but this is not a necessary restriction.) The final
statement will evaluate not only the function but its derivatives as well.

Now, no languages possess nstd type variables as part of their basic struc-
ture. However, some modern, more powerful languages, like C+-+ or Ada,
allow one effectively to enlarge the language by defining new “classes” of
variables. Loosely speaking, a class is created in C+-+ by specifying the data
peculiat to it and the functions and operations which can access those data.
In particular, the C++ class nstd is partially defined by the following user
interface:

// nstd
// Interfacse

overload cos;
overlonad exp;

class nstd {

double f; // Line b
double df [DIMENSION];
double ddf{ DIMENSION][DIMENSION];
public:
nstd();
nstd(double); // Line 10
void setVariable(double, int);
friend nstd operator+{ nstdk, nstdk);
friend nstd operator-{ nstdk, nstdk);
friend nstd operator-(nstdk);
friend nstd operator*(nstdk, nstdk); // Line 15
friend nstd operator/(nstdk, nstdk);
friend nstd cos{ nstd);
friend nstd exp(nstd);
};

To save space, 've truncated at the second order, included only two tran-
scendental functions, and otherwise shortened the class definition
enough remains to illustrate the ideas behind the implementation. Lines 5-7
describe the data appropriate to a nstd variable: a double precision real,
vector, and matrix — all of which correspond to saying that @ = {a,a,a)
The size of the arrays is contained in a macro variable, DIMEFSION, which is
defined by the user prior to compilation. These lines comprise the “private”
part of the declaration; the “public” part that follows lists the functions and
operators which are allowed to access these data.

However,

When the C++ compiler comes to a nstd variable declaration in an ap-
plication program it will allocate enough memory to accomodate the data
declared in the class definition. Further, it will initialize these data accord-
ing to rules specified in the “constructor” function declared in Line 9. The
constructor which I use simply initializes everything to zero.®

3] hope these program segments are transparent enough to make this
section readable without C-++ expertise. Nonetheless, those who have used
C++ undoubtedly will understand the examples better.

*This designation is probably a mistake, in light of my reluctance to call
the nilpotent elements differentials.

5This is easily extended; arrays in C++ can have an arbitrarily large num-
ber of indices.

6For the record, FORALL is not a part of the C~ - language; it is & macro 1
predefined to make subsequent programming easier and more transparent.

PAC 1989

nstd: :nstd() {

int i,3;

t =0.0;

FORALL(i) {
df il = 0.0;
FORALL{j) ddf[i] (31 = 0.0;
}

}

Starting a calculation is done with the setVariable (public) member func-
tion. which implements the operation shown in Eq.(3) and Eq.(5).

void nstd::setVariable(double x, int j) {
int i k;
t = x;
FORALL(i) {
aflil = 0.0;
FORALL(k) ddf[il[x] = 0.0;
}
dflj] = 1.0;
}

Binary operations, such as multiplication or addition, are defined for these
classes by “overloading” the arithmetic symbols, which is accomplished by
defining corresponding member functions for the class. For example. the
member function operator=, which is declared in Line 15 and is meant to

implement multiplication, is written (iruncated at second order) as follows.

nstd operator*(nstdk x, nstdk y) {

int 1,3;
nstd z;
z.f = x.f % y.£;
FORALL(1i) {
z.df[i] = (x.f = y.af[i)) + (y.2 = x.de(i]);
FORALL(j3)
z.ddf(i1{j) = (y.£ *« x.dae (il {j])
+ (x.f * y.darlil[j])
+ (x.df[i] *» y.d2[j])
+ (y.af[i) * x.af[j]) ;
}
Teturn z;
}

The operator/ function is written similarly. By comparing with Eq.(1) we
see that these functions are nothing more than a literal translation of the
arithmetic rules. There is no need for table lookups or explicit computations
of memory locations: C+ + takes care of those details antomatically.

Of course, the applications programmer neither needs nor wants to know
how operator* nstd::setVariable, nstd::nstd or any other member
function is implemented. He only cares that if x, y, and z are declared
to be nstd variables in his program, then a statement like z = x*y will be
interpreted correctly and perform as expected. Only the interface is required
to do that; the “toolkit” which contains the implementation is completely
transparent, buried in a library with which he will eventually link his pro-
grams. Further. if the interface is contained in a file, say nstd.hxx, then the
applications program need only contain the lines

#define DIMENSICN 4
#include ''nstd.hxx"

// or 2 or 8 or whatever

to allow the use of nstd variables.

By itsclf, operator* specifies the rule for multiplying two nstd variables,
but in the “Illustrative program segment” written above we multiplied nstd
variables by constants, 2.0 and 3.0. This worked properly because of the
second constructor function, declared in Line 10 of the interface.
the class contains the member nstd(doubls) the C+ + compiler will auto-
matically convert any real (i.e., type double) constant or variable appearing
in an expression with nstd variables to its nstd counterpart. This avoids the
necessity (1) of writing separate multiplication routines for all possible com-
binations of variables, nstd operator*(doublek, nstdk), and the like,
or (2} of declaring all variables in a program as type nstd. The constructor
is implemented as one would expect,

Because

nstd: :nstd(double x) {
int i,j;
f = x;
FORALL(1) {
df[i] = 0.0;
FORALL(j) daf(i][j] = 0.0;
}
}

but, once again, these details are transparent to the user.
Finally, since C++ does type checking, we can overload functions as well
as operators. This allows us, for example, to define a nstd member function

called “cos” which performs exactly as specified in Eq.(2).
P

nstd cos(nstd x) {
double sn,cs;

int i,j;

nstd w;

sn = sin(x.
X

1);
£)

cs = cos{ ;
w.f = cs;
FORALL(i) {
w.df[i) = - sn*x.df[i];
FORALL(j)
w.ddf [i]1[j] = - cs*x.df[i)*x.df[j] ~ sn#x.ddf[il [j];
}
return w;

}

The other elementary transcendental functions are extended in a similar
manner.

And that really is all there is to it. The result is that nstd variables act
as though they were part of the original language: the compiler knows how
to initialize them, arithmetic operations use the same symbols, transcen-
dental functions are called by their same names, and type conversion takes
place automatically in mixed variable expressions. Of course, there is no
reason to stop; one can go on to develop toolkits for rational, polynomial,
lorentzGroup, beamLine, observable, quaternion, extensionField, or
any other mathematical object which may be useful. Using C++, or other
object-oriented languages, even changes the approach to problem solving.
Rather than immediately asking, “How do I write the program?” one first
steps back and asks, “What objects are most convenient for expressing the
problem and obtaining a solution?” Toolkits created to aid the solution of
one problem are then easily rensable and appear naturally in later programs.
Ideally, given some level of communication among a group of users, toolk-
its can be shared thereby multiplying the group’s productivity. In short,
the arrival of object-oriented programming (which is what this amounts to)
represents a significant breakthrough of almost limitless possibilities.

References

[1] Robert L. Anderson and Nail H. Ibragimov. Lie-Bdcklund Transforma-
tions in Applications. Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, 1979. S1IAM Studies in Applied Mathemat-
ics.

[2] Martin Berz. Nuclear Instruments and Methods, A258:431, 1987.

[3] Martin Berz. Differential algebraic description of beam dynamics to
very high orders. Particle Accelerators, 24(2), February 1989. to be

published.

[4] John H. Conway. On Numbers and Games. Academic Press, New York,
1976.

[5] Martin Davis. Applied Nonstandard Analysis. John Wiley & Sons, New
York, 1977.

[6. Etienne Forest, Martin Berz, and John Irwin. Normal form methods
for complicated periodic systems: a complete solution using differential
algebra and lie operators. Particle Accelerators, 24(2), February 1989.
to be published.

[7] L. B. Rall. The arithmetic of differentiation. Mathematics Magazine,
59:275-282, 1986.

(8] L. B. Rall. Automatic differentiation: techniques and applications. In
Lecture Notes in Computer Science No. 120, Springer-Verlag, 1981.

[9] Abraham Robinson. Non-Standard Analysis, Studies in Logic and the
Foundations of Mathematics. North-Holland, 1966.

[10] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, 1986.

PAC 1989

