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Abstract 

The results of a beam-beam simulation program employ- 
ing round beams, being used in the design of a high luminos- 
ity B-factory, are reported. Features of the program include 
the incorporation of synchrotron oscillations and disruption, 
and an improved treatment of radiation damping and quan- 
tum fluctuations. We present and discuss some of the results 
of the simulation, including tune-shift limits and the onset of 
coherent motion. 

I. Introduction 

The beam-beam interaction is one of the principal factors 
responsible for the performance limitations of present electron- 
positron storage rings. Improving the beam-beam performance 
is therefore an important consideration in the design of high 
luminosity B-factories and C-T factories. All present electron 
machines run with flat beams, and the typical tune-shift limit 
is - 0.04. This paper presents results of investigations into 
the feasibility of using round beams to achieve greater tune- 
shifts and luminosities. Round beams are defined as those 
having equal betas and equal emittances in the two transverse 
dimensions. 

Naively, round beams can be expected to perform better 
than flat ones for the following reasons: 
1) for exactly round beams, the problem is similar to the one- 
dimensional case, for which large tune-shifts are realisedl, 
2) the emittances are equal; hence transverse coupling cannot 
substantially increase the emittance in the smaller dimension, 
3) the tune-shift parameter is independent of p and of longi- 
tudinal motion; hence the ‘footprint’ in tune space is smaller2. 

II. Xature of the Simulations 

The betas, the emittances, the damping decrement (6, 
the fractional energy loss per turn), the current and the tunes, 
are all inputs to the program. A machine geometry similar to 
that of CESR (Cornell Electron Storage Ring) is assumed. (See 
Table 1, below, for parameters.) Initially two beams are gen- 
erated, each comprising of one thousand test particles which 
are distributed in a random Gaussian way in the (four) trans- 
verse phase-space coordinates. These are then tracked through 
a linear lattice, described only by the horizontal and vertical 
tunes and the ,0s. Once a turn each particle experiences an 
impulsive beam-beam force, whose magnitude depends on the 
transverse position of the particle and on the transverse sizes 
of the opposing beam. Note that while the beams are created 
round, they are allowed to evolve freely, and the calculation of 
the beam-beam force, while assuming a Gaussian distribution, 
does not assume ‘roundness’. The usual Bassetti & Erskine 
formula3 is used to calculate the beam-beam kick. 

Radiation damping and quantum excitations are also put 
in once a turn. The details of how this is done are important 
to the simulation, and these are discussed more throughly in 
the next section. 

In later simulations synchrotron oscillations are also in- 
corporated. To date this has been done only in the weak- 
strong limit, wherein one beam (the strong beam) is never 
perturbed and only provides a force field through which the 
other beam is tracked. Results, both in the absence and Dres- 
ence of disruption, are discussed in sections V and Vi, re- 
spectively. 

III. Radiation Damping and Fluctations 

In a real storage ring, an electron emits many synchrotron 
radiation photons in a single turn, causing fluctuations in its 
energy. In its journey through a RF cavity it gains energy, 
leading to the phenomenon of radiation damping. In a com- 
puter simulation it is not practical to model these distributed 
phenomena exactly. Instead, one calculates the average effect, 
over one turn, of the damping and fluctuations on the position 
and angle of a single particle, and one then puts this in at 
one point in the ring. We want to develope formulae for this 
average effect. 

A) An Approximate Treatment: Consider a linear lattice 
and no beam-beam interaction. One can calculate the equi- 
librium emittance using radiation integrals that give average 
properties of the synchrotron radiation. Now introduce a lin- 
ear insert (say a linear beam-beam kick) into the ring. This 
modifies the lattice functions around the rina. As a result 
the radiation integrals will be different, and theemittance will 
have a new equilibrium value. Hirata & Ruggiero4 have shown 
that in the smooth approximation (p constant around the 
ring), such an insert leads to an increase in emittance. But, 
in high-luminosity storage rings substantial contributions to 
the radiation integrals will come from lumped elements such 
as wigglers, and the effects of the insert may depend on their 
positions in the ring. Thus, the change in emittance cannot be 
calculated without knowing the details of the lattice. 

Since we don’t have a detailed lattice to work with, and 
since we are more concerned with the nonlinear effects of the 
beam-beam interaction, we take as the input value of the emit- 
tance, the equilibrium value that we expect the beam to reach. 
We then introduce the radiation in such a wav that this emit- 
tance does not change in the presence of a linear insert. Any 
subsequent increase in emittance in the presence of the beam- 
beam interaction, can now be attributed to the non-linearities 
in the interaction. 

The simplest way to accomplish this is to write5: 

Xnew = %lde 

, t xnew = xdde -tip + i\/lWdl ;eesi2), 

where i is a Gaussian random number with unit variance and 
zero mean, and ~0 is the emittance in the absence of any insert. 

The above equations implicitly assume there are no phase 
space correlations; the new position does not depend on the old 
angle. If one looks at the beam ellipse in phase space, then the 
absence of correlations corresponds to the ellipse being upright. 
Now, we know that the ellipse will be upright at a symmetry 
point in the ring (where a = 0); consequently it behooves us 
to put the radiation in at such a point. If we introduce the 
radiation, with the above equations, at a point where (Y # 0, it 
will cause a mismatch in phase space and result in an increase 
in the area of the ellipse, i.e. in the emittance (Fig la). 

For similar reasons, the value of p used in the formula 
must be the actual value at that point; in the presence of a 
linear insert it is no longer equal to the nominal value, PO. At 
a symmetry point, this can be determined using the beam 
sizes : p = uZ/uZt. Again, using the wrong p will cause a mis- 
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match of the phase space ellipse, leading to emittance growth 

Fig.1: Remittance growth for a) cy#O. and b)P 
mismatch. 

B) A More General Treatment: It is possible to avoid the 
entire issue of how the presence of an insert affects p, by devel- 
oping a prescription which depends only on the local properties 
of the lattice. 

Consider a particle entering a linear transport section, in 
which it also radiates photons. The particle’s coordinates, as it 
exits the section will depend on the number, energy and points 
of radiation of the photons. Since the radiation is a statistical 
phenomenon, it is more correct to ask for an ensemble average 
of the coordinates : < z2 >, < ZZ’ > etc. In fact, it is precisely 
these quantities that are needed in the computer simulation. 
Note that they will depend on the structure of the lattice within 
the section, but not on events taking place outside the section. 

So, we can split the ring in two parts: one the linear 
transport with radiation, and the other the beam-beam inter- 
action. Consider a particle entering the linear section at s = 0, 
with coordinates ~0 and z;. Its position at the exit point, 
~2, will be given by the effect of translation by C(s2,O) and 
S(sa,O) - the usual cosine- and sine-like trajectories - plus the 
contributions from all photons radiated between s = 0 and ~2. 
Averages must be taken over all possible photon ensembles. 
Assuming a smooth approximation, so that the probability of 
emitting a photon is the same all through the section, we solve 
this problem in the limit s2 + co. This gives the local pa- 
rameters of the linear section (the focussing and fluctuation 
strengths), in terms of the input beta and emittance. We then 
use these parameters to solve the finite s case, and thus obtain 
the averages < x2 > etc. 

We can now calculate, once each turn, the effect of radi- 
ation on a particle’s position and angle, in a way that does not 
depend on the beam distribution or the nature of the insert.6 
A comparison of simulations using these two treatments of the 
radiation, shows that the emittances differ by not more than 
10% in any case. This gives us confidence that the emittance 
growth in a linear system discussed in Ref.4 is small and that 
the first treatment discussed is adequate. 

IV. Two-Dimensional Simulations 

The storage ring modelled is CESR. Since there are no 
synchrotron oscillations, each particle of one bunch sees the 
other bunch at exactly the IP. Typical parameters used in the 
simulation are shown in Table 1. The tunes were chosen to be 
above the coupling resonance (QZ - QY = n), and above the 

Q Z,Y = 3/4 resonance, which both calculation and simulation 
show to be particularly strong. Chromaticity and dispersion 
at the IP are assumed to be zero. Two beams are tracked and 
allowed to develope freely, so that the onset of any coherent 
motion may br studied. 

The results are shown in Fig.2. A tune-shift limit of 
0.12 is achieved, at 50mA, with a corresponding luminosity 
of 4E32/cm2/s. The behaviour is not very sensitive to the 
amount of damping or the kind of radiation treatment (dis- 

Revolution Freq.(fo) 
EnergyUQ) 
Damping Decrement(G) 
Nominal Remittance (60) 
Beta(P) 
Hon. Tune (Qh 1 
Vert .Tune(Q,) 
Long.Tune(Q,) 
RF Freq . (f,f) 
Bunch length (ul) 

390KHz 
6.3GeV 
lE-3 
iE-7m. rad 
3.0cm 
0.766 
0.755 
0.070 
600MHz 
l.km 

Table 1: Typical parameters used in the simulations. 
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a CESR like round beam machine.Two-dimensional simu- 
lation. 

cussed above). Nor do the numbers vary appreciably for small 
differences in 0, ~0, or the tunes. 

Coherent dipole oscillations were seen to set in at lOmA. 
These were removed by setting the centroids of the two beams 
equal to zero every turn, after which no further coherent be- 
haviour (such as quadrupole oscillations) was seen. 

V. Synchrotron Oscillations 

The next logical step is the incorporation of longitudinal 
motion. This can introduce synchrotron sidebands off existing 
betatron resonances; indeed, in present day electron machines 
these synchrobetatron resonances have been largely responsible 
for restricting tune-shifts and luminosities. 

The bunch-length, synchrotron tune and RF frequency 
are the additional input parameters used; they completely de- 
termine the longitudinal dynamics. Typical values are given in 
Table 1. 

At this time, the three-dimensional simulation is done 
only in the weak- strong limit. The strong beam is assumed ex- 
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Fig.3: Emittance as a function of single-bunch 
current for a CESR like round-beam machine, with 
longitudinal motion included.a)Without. and b)with 
diaruption.The nominal emittance is lE-7m.rad. 

actly round. Each particle of the weak beam receives one kick 
every turn; however, the kick point is no longer at the IP for 
all the particles. Its position varies because of the synchrotron 
motion: a particle with longitudinal coordinate s (measured 
~~.r.t. the centre of its bunch), receives the kick at a distance 
s/2 from the IP. Further, the beta function changes quadrati- 
cally with the distance from the IP, which causes the effective 
strong beam size to increase away from the IP : o2 = $(l c 
s’,‘#t). This couples the longitudinal motion into the trans- 
verse coordinates, giving rise to the destructive synchrobeta- 
tron resonances. 

Results are shown in Fig.Sa. Since there is only one 
beam, we use the emittance as the quantity of importance. 
There is an immediate increase in the emittance, even at very 
small currents, and this restricts the tune-shift parameter to 
very small values (5 .Ol) . 

VI. Disruption 

In a real storage ring, a particle working its way through 
the opposing beam feels a continuous force which changes not 
just the particle’s angle, but also its position. This phenomenon 
is often called disruption. 

We have attempted to model disruption, in the weak- 
strong limit, by treating the strong beam as a “thick lens”. 
A particle is tracked through this lens by breaking it up into 
a number of ‘thin’ lenses. While each of these lenses changes 
only the angle of the particle, the net effect of the ‘thick’ lens 
is to change both angle and position. 

In the simulation, the strong beam is divided into Nd 
equicharge chunks. The kick due to each chunk is calculated 
using the usual round beam formula, taking care to divide by 
Nd to account for the weighting factor. This kick is applied at 
the centre of charge of that chunk. 

The net effect of disruption is to soften the beam-beam 
force, because it provides an extra focussing within the strong 
beam. As a result, large amplitude particles are brought closer 
to the axis, where they experience a weaker force. 

It was found, from simulations, that disruption effects 
saturated for Nd 2 3. For all simulations in which disruption 
was to be included, Nd = 9 was consistently used. 

Results are shown in Fig.3b. Note that the presence of 
disruption keeps the emittance almost constant, allowing for a 
higher value of the tune shift parameter (around 0.08). 
Another effect of disruption is on the bunch length dependence. 
Fig.4 shows that at “1 a little greater than p, there is a decrease 
in the emittance. This effect is particularly strong at the lower 

Q, = 0.805 
Qh = 0.795 
Q,=OO70 
p = 3.0 cm 
bunch lengrh = 3.0 cm 

operating point, where we know that the beam is affected by 
the 4Q qI: - Qs 7 n synchrobetatron line. This leads us to 
believe t at this IS a resonance effect. However, at this point 
we have not fully understood the phenomenon. 

:‘, :‘5 
- Q,,=O.XllS. Q,,=0.795 - Q,,=O.XllS. Q,,=0.795 
--c Q&l 76s. Qt,=0.755 --c Q&l 76s. Qt,=0.755 

Bunch length (cm) 

Fig.4: Emittance as a function of bunchlength, 
at two different operating-points. 

VII. Conclusions 

The results presented indicate that there is good reason 
to consider the use of round beams for high luminosity storage 
rings. At present there are plans at Cornell to run tests with 
round beams at a p* of around 20 ems. Meanwhile, efforts to 
simulate the strong-strong case, with disruption, continue. 

It is also of importance to understand why DCI, which 
is the closest there has been to a round beam machine, did 
not perform particularly well. Efforts at modelling DC1 are in 
progress, with emphasis on the effects of the lattice coupling 
resonance and coherent motion. 
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