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Abstract

A deflecting mode in an RF cavity caused by an aperture
of the coupling hole from a waveguide is studied. If the coupling
hole lias a finite size, the RF modes in the cavity can be
distorted. We consider the distorted mode as a sum of the
accelerating mode and the deflecting mode.  The finite-size
coupling hole can be considered as radiating dipole sources in
a closed cavity. Following the preseription given by H. Bethe,!
the relative strength of the deflecting mode TMyyo to the
accelerating TNy o mode is calculated by decomposing the
dipole source field into cavity eigenmodes. Scaling relations
are obtained as a function of the coupling hole radius.

Introduction

A coupling between a waveguide and a cavity modifies
the cigenmodes of the closed cavity. When the size of the
coupiing hole is finite, the modificd aceelerating eigenmode can
have a beam-deflecting component. We study the TM;y-like
deflecting component as a function of coupling aperture. We
apply the thicory of cavity coupling developed by Bethe! to a
rectangular waveguide coupled to the side of a pillbox cavity.
We assume that a TEjy mode in the waveguide couples to the
cavity through a circeular coupling hole.

The Bethe theory assumes a small coupling hole:  the
produet of the wavemunber and the radius of the coupling
hole i1s small compared to unity.  The coupling hole acts
like the radiating magnetic and electric dipoles.  Applying
Lis theory to our problem, cach eigenmode of the closed
cavity is driven by hypothetical clectric and magnetic suiface
currents on the hole.  Nnowing the electric and magnetic
current distributions respousible for the radiation, the sowrce
teris of mode-umplitude equations can be calculated, and
the amplitudes of deflecting and aceelerating modes can be
solved mumerically.  We also solve amplitudes analytically
by uneglecting the intramode couphng.  We evaluate the
asswmption for the analytical solution by comparing it with the
wnerical solution. Then, the dependence of mode amplitude
on the size of the coupling hole is calculated.

Transverse Magnetic Modes in a Pillbox Cavity

We limit our scope of modes only to the Transverse
Magnetic wmodes (TM). Assuming that the waveguide mode
has a single frequency w, the excited TM modes in the cavity
depends on time as e A general TM mode in the cavity
considered to be made from a waveguide by capping the
cuds, can be expanded with mode vectors ag. The expansion
amphtudes P that are to be determined give the mode
strengtls.

At a given osciflation frequency w, the vanishing axial
component of the electric field at the cavity wall determines
the eigenvalues of v by satisfving an equation

(Vi+9%)alz,y) = 0.

For an ideal pillbox cavity, with a length d and radius D, fields
of a general TM mode can be expressed as?

E. = ZP‘C (Lk(('ikz + C—ikz) ;
k>0
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and B, = Zpk Tflejﬁ x (Viap)(e*? 4 =iy |
k>0 <Y (1)

where 5 = v,,, = 85, k = LI with an integer p, l;f‘ =

k root of I,

2 .
pes — 7%, and Ty is the n'
To express the vector potentials 4 in terms with the eigen-

modes, we define the orthogonal base vectors ('If as

. ke (<38 .
(lki = :i:%:{:(V{ﬂﬂ.«}—-;% . (2)
i =

Then, any vector potential (:Ii, A:) for the TM mode can be
expanded with the amplitude P as

T\ 4 ik P
A=) Py a;e™ 4+ Py et (3)
k>0
We also define the normalization My as

2
M= [aua0,dv = (55) J(Va(Va dl, (4)
s

o3
cky ¢
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where d | = £+

Cavity Mode Equations and the
Mode Component of Electric Current

In a Lorentz gauge, the vector potential A4 satisfies the wave
equation

We expand both the vector potential 4 and the clectric current
J in terms with the cavity eigemmnodes:

7= ij ([[:_c"k: + (‘l';(t—’k;)
k

and A = E Py ((’—L‘ttj+lkz+(‘;c_'kz) ’
k

RN S - 4 -
where & = (T, a:) . {3)

Substituting 4 and 7 into the wave equation, the equation for
the mode coeflicients Py is obtained as
wx
Qax
We included the energy dissipation effect for eigenmodes A with
cavity quality factor () and the mode eigenfrequency w.

To obtain the mode component of electric eurrent ji, we
multiply both sides with a complex conjugate of A, and take
an inner product followed by a volume integration:

/]'- A1V = je /Jk L drav @
<

w.’;z(vtak)(eikz _ 6—ikz) + :;ig;(cik: + C—ikz) )

With functions S, and C), defined as 1 at p #0, S, = 0 and
C, = 2, we define a normalization constant N as

Py 22Dy wiPy = dwcyy . (6)

where 4, =

1

_ Py .

Ny = QSPJ\[}(,I,‘f + QCI,(;? /ami(ﬂ* . (S)
i

Using Ny, the mode component of the electric current is

expressed as

R T
Jk = 7\“;/] - ARdV {9)
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Using the following relations: By = V x 44, Ey %Xk,

V x Ex = *%%ﬁ;‘ = %Ek, an_‘d Eq. (9) can be expressed with
the electric field eigenvector Ej as
e = j-Erdv . 10
Tk —iwNg /] k ( )

Applying the Theory of Diffraction
Developed by H. Bethe

We apply the diffraction theory developed by H. Bethe
to solve the hole coupling between the waveguide and the
cavity. To solve the problem, Bethe obtained a set of boundary
conditions that must be satisfied on a plane at the hole.
In his small-hole approximation, the fields are approximately
constant over the hole opening. Bethe showed that the radiated
fields are generated as if they are from an electric dipole and a
magnetic dipole located at the hole.: The magnetic and electric
dipole moments are given as’

- 2 - — ~
M= —LR:}HQ and P = —--LR:‘E() . (11)
3 3r

The magnetic dipole moment points along the hole surface,
and the electric dipole moment points normal to the surface.
The radius of the hole is R; Hy and Fg are the fields at the
hole in the waveguide if the hole is closed. However, if a field is
present in the cavity at the hole, both H¢ and E; are considered
as the difference between the closed waveguide field and the
cavity field.

We assume a lowest TE;; mode is established in the
rectangular wavegnide. We use the magnetic field Bye ™! of
the closed waveguide to express the magnetic dipole moment
M. The magnetic field By is measured at the small coupling
hole located at the center of the waveguide end-plate, and it is
parallel to the hole face. The dipole moment A{ in the presence
of a cavity field Bgyro 1s

M= _52;-133 [Bye™'°" — Byurno) (12)

Because there is no normal component of electric field at the
hole, the electric dipole field Egyeo, which radiates into the
waveguide from the cavity, is due to the presence of field in
the cavity. The electric dipole density p is equivalent to the
electric current density Jequiv = —iwop. The dipole moment P
is given as an integrated (ﬁipole density over a volume:

= - 1 -
P = /PdV = a;RSEsurIO n,
where 71 is the radial unit vector.

The magnetic dipole moment can be driven by an electric
current loop. Using the definition of magnetic moment, M (t) =

(13)

f J(C—H(ZS, the cavity mode component of the magnetic dipole
is obtained by using Eq. (10):

. c =, :
Ik = 5 (Bi- M),
Ng
where the unit vector § points along the hole (i.e., the negative

azimmuthal unit vector of the cavity). Similarly, the cavity mode
component of the electric dipole moment is obtained as

c - c =
PR B N S ) (A S L
ho= 5 [ 5 Brav = (B mp)

where 7 1s normal to the hole surface.

(14)

(15)

Pillbox TM Cavity Modes and the Mode Couplings
by the Currents from Electric and Magnetic Dipoles

The bases of the TM,,,., modes for an ideal pillbox cavity
can be defined as

i (Ymap)sin(mg + ) form#£0
i (Ymnp) form =0 .

o min
and o, =
We used cylindrical coordinates with the cavity axis z, and its
origin located at one end of the cavity. These base vectors
require that only the imaginary component of field amplitude

828

P correspond to the measurable quantities instead of the real
part of complex fields.

The magnetic and electric dipole moments in the driving
currents [Eq. (14) and Eq. (15)rdepend on the fields present
at the hole surface. However, the fields can be known only
after the mode coefficients Py are obtained. If no fields are
present in the cavity, only the incident field from the waveguide
drives the moments. Because the effect of currents from the
electric dipole describing the radiation from the cavity mode
into the waveguide is much smaller than the effect of incoming
TE1; mode into the cavity, we neglect the electric dipole in
the following argument. Expanding the surface fields in terms
with mode coefficients, the current that is due to the magnetic
dipole is expressed as

. < r* 2 3
Jkm = — _"Nk(Bk S5 R
2ka iwat (16)
X <~~7r—Ban€ ot [POBO hole t+ PllBll hole]) .

The mode coeficients Py and P, correspond to TMgg and
the beam deflecting mode TM ¢, respectively. If we define ay
as

O )

dnc? =, 2
“__N"A—(Bk ‘ 5’)5;133 ) (17)

the mode components of current are simplified as

A7) pm = Qux (Bdc_w"t ~ PyBy nole — P11B11 nole) (18)

Mode Equations for a Small Bethe Hole

The mode cquation drives the mode amplitudes Py through
the dipole term in the driving terms. Using the mode coupled
currents in Eq. (18}, the mode equation can be written as

.- w . -

Py + aq'Po + (w2 + agBo)Py 4 agB1 P11 = agBge™ ™!

LA 19

P+ o P+ (wi + anBi)Pi + anBoPo = a1y Bee ™™,
11

where the waveguide frequency wy is generalized to w. We
assume that the mode amplitudes P, depend on time as ™',
When modes are coupled, eigenfrequencies of the modes change
slightly. To calculate the eigenfrequencies, we postulate no
driving wave, By = 0, and a lossless cavity, i.e,, 1/Qx = 0.
Then, Eq. (19) can be solved as an eigenequation for wg and
wiy. Using these eigenfrequencies, the complex amplitudes Py
and P;, can be solved with @} and By activated in Eq. (19).

Analytical Expression of Mode Amplitudes—
Neglecting Intramode Coupling

Although it is possible to solve Eq. (19) using the
accelerating eigenfrequency wy as w, we can inspect the
scaling relation by solving analytically for an approximate
equation. We retain only the diagonal terms of Eq. (19). The
approximate equation 1is

Py + %\_Px +wiPy = ax (Bee™ ™" = By sur)
< A

The excited deflecting amplitude is calculated from

(20)

. w . . o ;
Pu+ C—QI—I‘PU +('w‘fl + a1 By pole )P = oy Bge™ 0t (21)
11

The stationary solution after a simplification with w?, = w}, +
011811 nole 1s written as

(—iu.ul
— . - b’).
Py =anBa| — S BTTTET (22)
“'m 0 Q1

PAC 1989



The acceleration amplitude, whose frequency is equal to the
incoming wave, is calculated from

. @o - i
Py + a‘PU +wf,10P0 = apBge™ ", (23)

0
where we used a definition w2, = w? + @By hole- The

stationary solution is written as

e—zuot

Py = a¢By (24)

Wl
(]()B() hole — Za%

Excluding the time dependence e~'o! the imaginary parts P
and P of amplitudes are obtained from Eqs. (22) and (24)

W1wg

P}, = a1, By 2 s, (25)
2 W
(@3, - 0B) + ()
Ld2
. fhed R
and P} = ayBy o . (26)

(2o -+ ()’
mo 0 Do

The ratio of imaginary parts of amplitudes for the excited
mode Py; and the accelerating mode P, is

2
. 2 Eﬁ)
—}3’—1 _ _(zl_l (CKOBO hole) + (Qo -5-11-11— ({)7)
P «@ 2 2 & T
Y o (*'121 - WS + a’llBll hole) + (%ﬁm) Qo

Example of the Bethe Hole Radiation

The Bethe small-hole theory assumes that the product of the
liole radius and the free-space wave number of the radiation is
smaller than unity. For a sinall hole coupled to a pillbox cavity,
we caleulate the ratio of TM11o and TMgyg amplitudes.

The transverse part of the complex magnetic fields for these
modes, in which the imaginary part of amplitude v corresponds
to the measurable quantity (this is due to the purely imaginary
base vectors a,,, ), can be written as

- i w .
Bior = 2(vg, + ivg) —J1(ve10)¢ ,
Yo

-, . w -~ dJy(z) 73
By =2(ef +ivyy) {_;77} [45711_81‘;" le=m1p —%]1(‘/11/’)
1 '

We assume a pillbox cavity having a gap of 32 em, a radius of
25.3 cm, and solve Eq. (19) including the off-diagonal terms.
The result shows that the amplitude expressions, Eqs. (25)
and (26), are approximately correct. However, we observe
some deviations. We define a characteristic quality factor Q..
that makes each term in the numerator in Eq. (27) give equal
contribution:

Figure 1 shows that Q. is in the normal range of cavities for
the coupling hole area from 1 ecm? to a few hundred cm?. The
result shows that the amplitudes for TMg,¢ and TMq;¢ modes
behave like Eqgs. (25) and (26) with its peak at Q.. Figure 2
shows the TMgjq and TM;;o amplitudes solved from Eq. (19)
as a function of ). However, the ratio of the amplitudes is a
constant except at low @ (Fig. 3).

Because @, takes a wide range at nominal size holes,
behavior of individual amplitudes depends strongly on the
cavity Q. At Q=5000, the amplitude of the TMg1g mode is
proportional to R as expected from Eq. (26) (Fig. 4). But
the amplitude of the TM;;o mode is different from Eq. (25).
However, the ratio of amplitudes Py11/P119 shows a clear
scaling as R*%! at various hole sizes (Fig. 5). The TMg0-
mode offset from the cavity axis can be calculated from the
ratio of amplitudes by considering the TM;;q mode as a
perturbation. The mode offset normalized to the cavity radius
is plotted against the hole area in Fig. 6, which it shows that

1% 1074
E o 3
1 ER
o 1~ x ]
1974 . i 107 s
g o s g N
M ~ I
2104 ~. a7 o Pho
3 \\ 3 N
D‘ \\"\
107 e 10— T e
10 10° 1c’ 1n* 100 ot e oot ot o
Qenr Q
Fig. 1. The characteristic (J.p, = Fig. 2. Amplitude P}, and

> i §
w2 /(8,B,) scales as R™3, P}, dependence on cavity Q.

.‘G:_E
] L .
s < ! N\ Pl
& 10y £ 0y \\
K ] N\, s E A
. ] ~ 4 q
- e < ~
K3 . .
S 0 EP/B s S
10" T ey ™ 10° A T
10 10’ 10° Ly o e 1 N £ T s
Q Normalized Amplitule P/B,

Fig. 3.  The ratio of amplitude

Fig. 4. A sample of amplitudes
PIIIO/P(;IO does not depend on

TMg1p and TMp3g at Q=5000.
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the displacement is proportional to R*°. We also note that the
dependence for the ratio of the magnetic field is approximately
the same as the accelerating mode displacement.

Conclusion

For a small hole coupling between a waveguide and a pillbox
cavity, the ratio of the deflecting mode to the accelerating
mode, TMy;5/TMg1o depends on the cubic power of the
hole radius. The displacement of the accelerating mode also
scales the same. The ratio of these mode amplitudes is
nearly a constant over a wide range of cavity quality factor,
although each amplitude depends strongly on Q. The analytic
expressions of mode amplitude do not fully describe the scaling
relations because the intramode coupling is not negligible.

References

1. H. Bethe, “Theory of Diffraction by Small Holes,” Phys.
Rev. 66 (7) and (8), 163 (1944).

2. J. D. Jackson, Classical Electrodyramics, 2nd Ed. (John
Wiley & Sons, NY, 1975), Sect. 8.3 and 8.11.

PAC 1989



