
SCALING RELATIONS FOR A BEAM-DEFLECTING ~~~~~~ MODE 
IN .m ASYMMETRIC CAVITY* 

I-1. Takedn 
iX’IS-I-%820, Los Alamos Notional Laboratory, Los Alamos, i?!cw Rlcsico 87545 

Abstract 

A d~fccti~lg 1no~1~~ iu an RF cavity caused ly an aperture 
of t hit cnnl>li*lg holo fix,in a wavegllitlc is st,ndird. If the collpling 
liol(~ lizis a finit? si7P, the RF modes in the cavity can be 
clistortctl. 1L-c consiClcr the distorted mock as a 511111 of tllc 
:I~~ci~lcrating mo& :m~1 tl~c dr\flccting mode. Tlw finite-size 
colll>ling hole ciul 1)~ corieitlcrcd as radiating dipole so~1rccs in 
a clow~l cavity. Follo\ving the prcscril>tion given by II. B&e,’ 
tll<> r<.lativc strcllgtll of the d<+kcting mode T\fllo to the 
;~cc~~l~~r;~t ing T.\I “10 mode is caicl&lted by decomlxxing the 
tlil~olc source fil,ltl into cavity c~igcnmotlcs. Scalil!g relntions 
i~t’c ol)taiilcd iis a fllllction c,f the wllI)ling hoi? rathus. 

Introduction 

A rolly:li:lg lwtwxw a xxvcguitlc ant\ a cavity mutlifics 
tlIf> c~igwui1cxl~~h of tlic closed cavity. \s’llCIl tlw size of t11c 
couI):ilig 1101(, ii fiuitcs, the mc&kd acc~~lcratiilg oigcmnotle c;m 
have a t)c,a111-tlc,flicctillg compon<‘nt. 11’~ study the TX11 ,~-lil;c 
tlrflwtilq conll)onrnt as ii function of coupling al)ertu*c~. \Ye 
i\l>l)ly the throry of cxvit,y colll>ling tle~~lopd by, B&he’ to a 
rc~ctnllgulwr wawglGtl<~ coul)l~d to the side of a pllbox cavity. 
\Vc ~SSIIII~C that n TElu mode in tlw wavrguitlc cou~ks to the 
c;ivity tliroligli 2% circular coupling hole. 

Tlw B,xtlw tllco1.y nssum~s a small coul)ling 1~01~: t!x 
~>rotllI~~t r:f the \f-a\wlnl1li,rl and tlir radius of the coupling 
1101~ is small c.om~~ar~~~l to unity ‘The coupling 1101~ ilcts 
li!;c t!*r r;~tli;Ltl:ig nlagiwtic ant1 cllcctric c!il,olrs. A1)1)1yiug 
his tl1eory to 0111‘ I):‘(ol>leml C;:l~ll Cigc~llniOilC of the clowtl 
c avit-i is dri\-(71 11y h:~pothotlcal cl0,tric. nntl nlagnetic sulfaw 
c’luTt’llts 011 ttw Ilolt~. Iiuoxving tlw cllcctric and magnetic 
crurc’nt tlistrit,utions ri,slx)il”i l:lc for tht, ratlintion, t!lc so~uw 
tc7uis of iiiotlc,-;i;lil~litli(!c rcp’ltiOlls can lx cal~d~Lted, i!llL 1 
t !lC aln~)litutlcs Of tL+lc~cting illltl accclcrnting lllotlcs c‘i~ll IJe 

soli.(d uluIlcric;~l:y. TI’e a!so Solve alul&tutles annl!.tic,;llly 
II!- Ilc,glrcting tli(s intramodv c01ll)hng. \I% evahlat<: the 
as5u:nptiou for tllc, analytical solution l>y coml~aring it vGth the 
ntuwrical solttticlll. Tl~,n, the tlcl~wd~~ce of mode :lmplitu& 
on thus hiw of tlio ctnll)lil:g hole is calculatcc!. 

Trallsversc h1nglletic Modes in a Pillbox Cavity 

\lTc !ililit o11r scolx: of modes r)uly to the Transvcrw 
1I:lg:wtic ~~otks (T?,I). A .. 
has a sillgl? fwclucncy U, 

ihunling that tlw watvcguitlc inotlc 
the escitcd TX1 modes in the caTit> 

tlc~;)c,lt4ls on t inlc’ ds c --Id’. A gc~wr:tl TI,I mods in tlw cavit> 
coIlxi<l<~I(.Il to 1lC Il~il(lC frOnl A wvawguiclc l)y Cil~)~)illg tile 
ml~. vim i)r c~~l)i~n(l~~( 1 with mode vcc’tor~ ok, The cqansion 
:~lll;~litli(l~~h Ilk th;kt al<’ 
>:rcl,gtlls. 

tu lx, d~~tcwnined giw tile riiotl~~ 

Xt il givc,n oscillation frccll\(.l:cy ii’, the vanihhillg asial 
c~~~~l~~Ox1~~11 of :li(b clwt ric ficltl at the carlip \viLll d($erli&ws 
tilt c+,cnv,lluc > of A, 1~y satisfying an equatiou 

(0: -+ q)ol(.r, y) = 0 

For an i&al I)iilhos cavity3 \vith a kngt,h d and radius D. fic~ltls 
of a gwcral T.\I 111otic ra11 lx rsprrssccl as* 

E: = cpk <,l(cikr + phz) 
k>O 

ipd 
and ii, = c Pk --i x cy2 

(-7tnk)(,~kz + c--y : 
I>0 

(1) 

n~ll<crc -J = -,z,l II G 9, k = 7 w*ith an intcgcr p, k; f 
2 2 pc-p - -frnn ant1 x?,~,& is the nfh root of J,,. 

To esprcss the vector potentials .i in terms with the eigen- 
motlr.s, WC d&w the orthogonal haac vectors ~7: as 

4 Ok f 
[ 

*+mkj.+~ 
c I 

(2) 

Then, any vector pote:ltiul (‘<l, .4;) for thr TI\I mode can hc 
cxpantletl with the ainplitutlc I’b as 

x = c Pk ,‘;fcik: + Pk (;I;Cf’ (3) 
k>O 

TV<, also dcfinc tile norlui~lization 21ik as 

*Uk 5 $ “I-CiLk z;,di’ = (*)2 J(~7lo~‘l(-7:Ink)*tl~’ , (41 

wlwrc ZLI: z k%(~V,n;). 

Cavity hlode Equations and the 
blade Component of Electric Currellt 

Ill il LoIwt7. gall “C h , tlw vector ptcnti21 .-I’satisfki tlic \v:LYc 
c’cluatioil 

p.i’-. e;x +,y. 

TV<: expand IJotil the vector 1’otCntial ;I’nnrl the (%ksctrik. ctureut 
J in trrms with t,fw cavity eigcnmotlt3: 

j’= C j, ((~crk: + 17;~-‘~;) 

k 

ant1 .-1’ = x Pk (z:e trhr f r;,c -y , 
k 

-It wl1cre Ok = (ci;L,n:) (2) 

Sulxtituting =i‘ uiitl J into the \WTY equation. t,hf cqII;~tioil fw 
tile motle cocficicnts PA is vl)tairwd 3.5 

8 
P,i + %P,i + LC’:P~ = -4ncjx 

Qx 
(6) 

SVe inclutlotl the energy tlissip;!tion cffwt f(x c~igi3imotl~~ ,\ \vitll 

cavity qlla!ity factor (2~ and the mode c,igcrlfrcclllc~Ii~~ LX, 
To okaiu the n~~lc romponmt of clcctric current j,, xe 

multiply both sidc5 with a cornplcs conjligatc of X, ail(i take 
an inuer product, followed by a volume integration: 

J 
;. &ll’ = j, 

J 
d& . .-i$li’ , (7) 

where ,& z $(V’l~kk)(eikz - t-ikzj + ZF(tLkz + (,--iir) 

U’ith functions S, and C,, d&net1 as 1 at, p #O, S, s 0 and 
c’, % 2. WC define a normalization constant .Vi; as 

1 
Nn s 2S,,AI& $ XI,= 

(,i J 
ivktrprT . (8) 

Using -hill 1 tllc mode component of tllo clec-tric curlcnt is 
cq)ressed as 

1 
Jk = n-, 

s 
J- xyv . (0) 
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. - 4 
Using the following relations: Bk = V X .kt, Ek = YAk, 
Vx~k=-‘iZLti 

E at c l?k, and Eq. (9) can be expressed with 
the electric field eigcnvector ik as j, = -L.- 

-iWiVk s j+;dV (10) 

Applying the Theory of Diffraction 
Developed by H. Bethe 

We apply the diffraction theory developed by H. Bethe 
to solve the hole coupling between the waveguide and the 
cavity. To solve the problem, Bethe obtained a set of boundary 
conditions that must be satisfied on a plane at the hole. 
In his small-hole approximation, the fields are approximately 
constant over the hole opening. Bethe showed that the radiated 
fields are generated as if they are from an electric dipole and a 
magnetic dipole located at the hole. The magnetic and elect,ric 
dinole moments are given as1 

I!?= --$R3go and $=-$R"&. (11) 

The magnetic dipole moment points along the hole surface, 
and the electric dipole moment points normal to the surface. 
The radius of the hole is R; Ho and ELI are the fields at the 
hole in the waveguide if the hole is closed. However, if a field is 
present in the cavity at the hole, both H0 and Eo are considered 
as the difference between the closed waveguide field and the 
cavity field. 

\\‘e assume a lotvest TElo xrlotle is established irl the 
rectangular waveguide. \I’e use the magnetic firltl DCiE-*WOt of 
the closed Fvaveguide to rxpress thr magnetic dipole moment 
.W. The magnetic field Bd is measured at the small coupling 
hole located at the center of the waveguide end-plate, and it is 
parallel to the hoic face. The dipole moment A!f in the presence 
of a cavity field Bsurfo is 

Al = -&X3 [13de-iwo” - Bsurfo] (12) 

Because there is no normal component of electric field at the 
hole, the clcctric dipole field Esur[~, which radiates into tile 
wa\reguide from the cavity, is due to the presence of field m 
the cavity, The electric dipolc density 17 is equivalent to the 
electric rurrcnt density j’e lllo = --itiJolS: The dipole moment P 
is given as an integrated &pole density over a volume: 

P’ = 
J (13) 

where ii is the radial unit vector. 
The magnetic dipole moment can be driven by an electric 

current loop. Using the definition of magnetic momrnt, M(t) f 

s -y-’ I J(t’ 1s the cavity mode componeut of the magnetic dipole 
is obtained by using Eq, (10): 

j, = $?; &fir(t) , (14) 

where the unit rector s’points along the hole (i.e., the ncgntivc 
azimuthal unit vector of the cavity). S imilnrly, the cavity mode 
component of the electric dipole moment is obtained as 

jk = $ 
/ 

5. EidV = $2,‘ i;)P(t) (15) 
k 

n-licrc ii is normal to the hole surface. 

Pillbox TM Cavity Modes and the Mode Couplings 
by the Currents from Electric and Magnetic Dipoles 

The bases of the TM,,,,,,, modes for an ideal pilll,ox cavit,y 
can be defined as 

cr - iJ,,,(y,,,,,p) sin(r7ld + 6) for m # 0 , m li - 
mtl N",, = i.JnL(Yln,&p) for IJJ = 0 

II’{: used cylirltlrical coordinates with the cavity axis 2, and its 
origin located at one end of the cavity. Those base vectors 
require t,hat on!y the imaginary component of field am~~litudc 

Pk correspond to the measurable qllantities instead of the real 
part of complex fields. 

The magnetic and electric di 
currents [Eq. (14) and Eq. (15) f 

ole moments in the driving 
depend on thr fields present 

at the hole surface. However, the fields can be known only 
after the mode coefficients Pk are obtained. If no fields are 
present in the cavity, only the incident field from the waveguide 
drives the moments. Because the effect of currents from the 
electric dipole describing the radiation from the cavity mode 
into the waveguide is much smaller than the effect of incoming 
TElo mode into the cavity, we neglect the electric dipole in 
the following argument. Expanding the surface fields in terms 
with mode coefficients, the current that is due to the magnetic 
dipole is expressed as 

.ikm = - $ij;. q$R3 

2h 
X -- 71 BOi,,e-iwat - [PoB,, hole + P, IBII ml) cl,61 

The mode coefficients PO and PII correspond to Thlolo and 
the beam deflecting mode Thrills, respectively. If we define ox 
as 

aA~-4”c2(g;. 
NA 

ST&R” , (17) 

the mode components of current are simplified as 

4rcjI;,,, = cyl (BdepZYo* - PUB0 hole - PI~BII I,~L~) (18) 

Mode Equations for a Small Bethe Hole 

The mode equation driycs the mode aml)litlltlcs Pk tllrough 
the dipole term in the driving terms. Using the mode coupled 
currents in Eq, (lS), the mode equation can be written as 

ia + ““&II + (w,’ + aoBo)Po + aoBllPll = aoBde-‘“’ 
Qo 

(19) . . 
PII + ““+I, + (w;, + allB,l)Pll + nllBoPo = Q.~,B~F-‘~~ , 

QII 

where the wavcguide frequency ~‘0 is grncralized to w’. \I’e 
assume that the mode amplitudes I’r, depend on time as eetwt. 
When modes are coupled, eigenfrequencies of the modes chauge 
slightly. To calculate the eigenfrequencies, we postulate no 
driving wave, Bd = 0, and a lossless cavity, i.e., l/Qk = 0. 
Then, Eq. (19) can be solved as an eigenequation for WIJ and 
~11. Using these eigenfrequencies, the complex amplitudes PO 
and PII can be solved with Qk and Bd activated in Eq. (19). 

Analytical Expression of Mode Amplitudes- 
Neglecting Intramode Coupling 

Although it is possible to solve Eq. (19) using the 
accelerating eigenfrequency L?O as w, we can inspect the 
scalino relation by solving analytically fur an approrm~at~e 
equat&n. \Ve retain only the diagonal terms of Eq. (13). The 
approximate equation is 

ijA + ““PA + w:Px = aA (Bde-iwof - Do ,u,I) 
Qx 

The excited deflecting amplitude is calculated from 

(20) 

i;,, + FP,, + (df, + crllBll hole)Pll = o~,D&-“’ (21) 
1, 

The stationary solution after a simplification with w:,, = of, + 
cullB11 hole is written as 

PII = 31Bd 
( 

r-*udt 

w‘ m J 
2 -,;-iy (22) 
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The acceleration amplitude, whose frequency is equal to the 
incoming wave, is calculated from 

i;” + %” + c&PO = agBde-o* , Qo (23) 

lvhcre we used a definition w~,s = W: + osBs hole. The 
stationary solution is written as 

PO = aoBd ( ,,Be;;;: J (24) 

Escludixlg the time dependence emiwot, the imaginary parts Pi, 
and I’; of amplitudes are obtained from Eqs. (22) and (24) 

u 

Pi, = %lBd 
Qll 

2 ' 
(25j 

(UT" - 

d. 

and I’; = woBd (20 (‘G) 

The ratio of imaginary parts of amplitudes for the excited 
mode Prl and the accelerating mode Pa is 

p;, _ fill (QJO ,,o,$ + (2)’ 
P, -z 

(41 - w,? + NIIBII me)‘+ w w 
C-9 

2% (27) 
z-zy. 

VI1 Qo 

Example of the Bethe Hole Radiation 

The Bethe small-hole theory assumes that the product of the 
It& r,atlius and the free-space wave number of the radiation is 
srnallcr than unity. For a small hole coupled to a pillbox 
we calculate tlte ratio of Thllrs and TMors amplitudes. 

cavity, 

Thcs traItsverse part of the complex magnetic fields for these 
modes, in whiclr the imaginary part of amplituclc 2~ corresponds 
to the measurable quantity (this is due to the purely imaginary 
base vectors a,,,), can bc written as 

B1,1 = 2(“;,+iU;, ) { -5) [6711~ IG=XIP -$w,llP~] 

I\‘c ilSSUnlC a pillbox cavity having a gap of 32 cm, a radius of 
25.3 cm, and solve Eq. (19) including the off-diagonal terms. 
The result shows that the amplitude expressions, Eqs. (25) 
and (2C), are approximately correct. However, we observe 
some deviations. We define a characteristic quality factor Qcllr 
that makes each term in the numerator in Eq. (27) give equal 
contribution: 

Qchr E w,” 
wBo llole 

wn-3. 

Figlue 1 shows that Qchr is in the normal range of cavities for 
tllc coupling hole area from 1 cm2 to a few hundred cm2. The 
result shows that the amplitudes for TMsro and TMrro modes 
behave like Eqs. (25) and (26) witlt its peak at Qchr. Figure 2 
shows the TMsr,, and TM 11s amplitudes solved from Eq. (19) 
as a function of Q. However, the ratio of the amplitudes is a 
const;tnt except at low Q (Fig. 3). 

Berausc Qchr takes a wide range at nominal size ho!cs, 
behavior of individual amplitudes depends strongly on the 
cavity Q. At Q=SOOO, the amplitude of the TMsrs mode is 
proportional to Rw3 as expected from Eq. (26) (Fig. 4). But 
the amplitude of the TMrlo mode is different from Eq. (25). 
However, the ratio of amplitudes Ps,r/P,rs shows a clear 
scaling as Rx.” 
mode offset from 

at various hole sizes (Fig. 5). The TMsrs- 
the cavity axis can be calculated from the 

ratio of amplitudes by considering tlte TMrrs mode as a 
perturbation. The mode offset normalized to the cavity radius 
is plotted against the hole area in Fig. 6, which it shows that 
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Fig. 4. A sample of amplitudes 

TMolo and Th?llo at &=5000. 
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Fig. 6. The TM olo-mode offset 

is proportional to (hole radirls)3.0 

the displacement is proportional to R3.‘. We also note that the 
dependence for the ratio of the magnetic field is approximately 
the same as the accelerating mode displacement. 

Conclusion 

For a small hole coupling between a waveguide and a pillbox 
cavity, the ratio of the deflecting mode to the accelerating 
mode, TMlrs/TMsro depends on the cubic power of the 
hole radius. The displacement of the accelerating mode also 
scales the same. The ratio of these mode amplitudes is 
nearly a constant over a wide range of cavity quality factor, 
although each amplitude depends strongly on Q. The analytic 
expressions of mode amplitude do not fully describe the scaling 
relations because the intramode coupling is not negligible. 
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