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Introduction 

The theory of cumulative beam breakup is applied 
to the problem of the deflection of the tail of a 
single bunch in a linear collider produced by the 
wakeflelds of the particles closer to the head of the 
bunch. An analytic expression is derived for the 
envelope of the bunch transverse oscillation, which can 
be used in estimating the magnitude of the effect. 

Analysis 

The difference equation for the transverse 
displacement <(N,M) and angle o(N,M) of the M$h bunch 
as ir_ enters the Nth cavity can be written as 
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Here w/2x and Q are the frequency and quality factor of 
the def1ectir.g mode, T is the tine between bunches, 
mcLa. N is the particle energy in the Nth cavity, and R Ni! 
is a parameter proportional to the charge in the &th 
bunch and to the ratio of the shunt impedance to the Q 
of <he Nth cavity. 

The 2x2 matrix M represents the transport between 
cavities. In the smooth approximation, we will use a 
constantly focussing matrix. In this approximation one 
can set 

sin2fi N 

Ml1 = M22 = co.5 p N ' Ml2 = LN , M21 = - - ,(3) L N 

where ; is the distance between the centers of 
successive cavities. 

From now on we will assume constant parameters for 
all cavities and a drifting beam with no acceleration, 
and we will drop the index N from all parameters. We 
can rewrite Eqs. (1) and (2) as 

M-l 
Z(N.M) = r c sin(M-e)wr exp c(N,e), (5) 

e=c 

where r = X/r. In the smooth approximation assuming 
that the focussing is weak, we can write 

cos /.I z 1 - $/2, and Eq. (4) can be rewritten as 

a2c -+p2<=z . 
8N2 

(6) 

Equations (6) and (5) apply to successive bunches 
in the case of cumulative beam breakup. For single 
bunch beam breakup we will divide the bunch in M 

T 
macroparticles each carrying a fraction l/M T of the 

total bunch charge. Equations (5) and (6) can be 
applied to give the deflection of successive 
macroparticles. Since 7 is now the time increment 
between successive macroparticles, 0~ can be assumed to 
be a small quantity. We can therefore rewrite 
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where Q no longer appears explictly. In the continuous 
approximation, we have 

az M-l 
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Equations (6) and (9) can be combined to give 

(9) 

=wrr< . ( 10) 

The solution to Eq. (10) will 'be exponential in 
character for large M and N. We therefore try a 
solution of the form 

y(Nfl,M) - 2~0s~ y(N,M) t y(N-1,M) I Z(N,M) , (4) 
<=Wexpf(N,M) , (11) 
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where 'h' is a slowly varying function of N and M. If we 
retain only derivatives of the exponent, Eq. (10) 
requires that 

af2 2 af 2 [[I Jr1 z +fi aM = w-c r 

Using the ansatz 

f(N,M) = -ipN + MA E(N) , 

we have 

(12) 

where 

in 

F=e 6 

If we define t as the time from the front of the bunch 
and z as the length along the structure, the exponent 
has the form 

(13) 

in 

-2ifi h 2 p-2 2 E (N) E'(N) = WT r 

fron whic;7 one can derive the following equations for h 
and E(N): 

h = 213 , (14) 

3 
E(N) = z exp(in/6) (15) 

We now need to express the exponent in Eq. (13) in 
terms cf the physical bunch parameters. If the total 
bunch time is T, then the time interval between 
macroparticles is 

-c=T/M_ (16) 

The tocal number of actual particles in the bunch is N T 
and the number of particles in a macroparticle is 

N P = NT/M T 

Since the parameter r has the form 

Z I 
NT e2 z WT 

(1 
2mcy . (20) 
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Keeping only the leading term in E, we find 

F=e 6 
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where I 
P 

= eNp/T = eNT/T is the peak current, and ct is 

the distance from the front of the bunch. We solved 
the difference equations of Eqs. (1) and (2) 
numerically 
r= 2 x10 

-4 for the followi-?g set of parameters: 
, m/2n = 8 x 10 , Q = 3, MT = 250 and 

N e2Z 
L P 1 

==--< I r 

(17) 

N = 3000, 6000, 9000, 12000. The phase advance, p, was 
chosen to be n/150, so that if N is a multiple of 300 
the phase factor exp(ifl) is 1. The results for E/E, 

are plotted in Fig. 1. 

According to Eqs. (ll), (13), (14), and (15), c/E 
2/3N1/3 0 

is only a function of M . This is checked in 
Fi . 2 M2xNl/l 

where the data of Fig. 1 is plotted against 
The data from the four curves of Fig. 1 is 

seen to lie on the same universal curve, confirming the 
validity of Eqs. (ll), (19) and (20). 
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we can use Eqs. (16) to (18) to write the exponent of 

Eq. (11) as 

3 
f= -i/J.N+?F , (19) 
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The universal dependence of c/E, on F (which is 

proportional to M 2/3N1 I3 
) ;n Fig. 2 is explicit in 

Eq. (25). 

For the situation where 7 and p 
vary with z, we need to make the replacements 

7. 

I 

dz 

z+ a(z) p(z) (27) 

and 
-150 I 
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Discussion 

Equation (21) has been derived under the 
assumption that only one mode is excited. In the 

general case 1. in Eq. (5) can be written as a sum Over 
the different modes 

“kT 

M-l -(M-t!) 2~ 

z=xrk C e k sin(M-e)Ukr E(N,!) r (22) 

k e=o 

where the index k labels the different modes. In the 
limit T + 0 the contributions of the different modes 
add up coherently so Eq. (9) can be written as 

(23) 

The exponent car. then be written in the general case as 

F=ei% 1%~ [F]1”3;$ . (24) 

Only the exponent has been derived here. A more 
complete saddle point calculation gives the factor W in 
front of the exponent in Eq. (10). The result, which 
we state without proof, is that the displacement of the 
transverse oscillation of the bunch, given a constant 
initial displacement 5, is 

1 ’ (25) 

where 
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