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Radiation Snectrum 

This paper is concerned with the synchrotron radiation from 
an undulating electron beam in a rectangular waveguide. It is shown 
analytically and numerically that the radiated energy spectrum may 
differ significantly from the free space result when the undulator 
length divided by the Lorentz factor of the electron beam is larger 
than the transverse size of the waveguide. The undulator radiation is 
identified with the wake field in beam instabilities. The concepts of 
wake function and impedance are introduced to formulate the present 
problem in the same manner as the beam instability problem. It is 
shown that the obtained impedances satisfy the Panofsky-Wenzel 
theorem and other proPerties inevitable for wake fields. 

An (planer) undulator is a device to produce a high-flux 
quasi-monochromatic radiation in narrow angular cone in the forward 
direction. Most of works on the undulator refer to radiation in free 
space. In reality, however, undulators are surrounded by the metallic 
boundaries such as vacuum chamber. Then, the first question arises: 

(1) How will the properties of the undulator radiation be changed 
when the boundaries are taken into account? 

The radiation in the waveguide can be identified to the excitation of 
the waveguide modes. The radiated energy is redistributed among 
matched waveguide modes. In a consequence, the energy spectrum 
tends to be changed from the monotonously increasing function to 
discrete sharp peaks. each corresponding to an excited waveguide 
mode. This change is particularly of interest in the low frequency 
region where the redistribution of the radiated energy into small 
number of modes will enhance hight of their spectra significantly. If 
the wavelen 
size, the 

th of those waveguide modes is larger than the bunch 
w f ole bunch is reinforced to move together by the 

waveguide fields. This may cause a new type of collective 
instability. So far, only few works have been done on the influence 
of metallic boundaries on the radiation [l]-[3]. In the reference [3], 
the author presents a general method to calculate the radiation fields 
from an undulator with finite length in the presence of rectangular 
waveguide. In this paper, we show only the final results of the 
analysis. The method is actually the generalization of Motz- 
Nakamura’s Hertzian vector method. 

Once the fields are calculated, the next question arises: 

(2) IIow will the radiation fields disturb the motion of particles in 
abeam? 

In this question, both the high and the low frequency parts of the 
radiation play important roles. The high frequency part will 
contribute to the bunching of particles in a microscopic scale, which 
induces the coherent radiation from particles in the same bunch. This 
is the stimulated emission Process in FEL’s. The low frequency 
part, if it contains significant energy, will drive collective motion of 
the whole bunch. In both cases, the articles and the radiation fields 
create a interactive system. Our u hmate purpose is to solve this P* 
particles-radiation system in a self-consistent way. For this end, it is 
necessary at first to formulate the action of the undulator radiation 
fields on 

f 
articles. We have a similar situation in beam instability 

problems 41. A charged particle interacts with its environment to 
create a wake field. This field acts back on the beam and disturbs the 
parricle motion. This particles-environment system may be identified 
with the present particles-radiation system. If this identification is 
possible, we should better formulate the present problem in the same 
manner as beam instability problem, so that we can apply all the 
techniques accumulated in the beam instability study. With this in 
mind, we introduce the concepts of wake functions and their Fourier 
transforms, impedance. 

The geometry of concern may be that a part of a considerably 
long waveguide is sandwiched by the undulator for the finite length. 
We assume that the walls have infinite conductivity. We denote the 
inside region of the waveguide by 0 < x 5. a and 0 s y s b. We 
consider a single electron moving in x-z plane. It enters to the 
undulator at x = xc, y=yc, z=z, at time t=O. The undulator has 
length L. The total radiated energy U is given by [3] 

u= c c A!-%pj~~p(4d~, (1) 
m.nzo -4p4p 

where 

and 

@~p@4=*[(#(l +(?~(*)j-(Pma+~@+nP 
Inn 

si4Pp - B,,) I& 
wah Fmp= (b,- P,,)L# . 

where JP(x) is the Bessel function. Other notations are as follows: 
k= eB/(mcku), B is the undulator field, wg(= &u/v) is the undulator 
frequency, y is the Lorentz factor of the electron, m is the electron 
rest mass, v is the initial longitudinal velocity of the electron, c is the 
speed of light, e is the unit charge, and E is the dielectric constant. 

The quantity A:& depends on the particle orbit and provides the 

selection rule about mode number: n = odd, m+p = odd. On the 

other hand, the quantity Z’,“$ur) has the same dimension as 

impedance. The product A m z”, 
mnp mnP 

(W) represents the energy flow of 

the radiation of the pth harmonic from the undulated electron into the 

waveguide mode specified by (m.n). Note that Z!zp(w) is always 

positive and is an even function of o being accompanied with the 

change in sign of p, i.e., Zzp(o) = Zop(-o) 2 0. 

The quantity G, is defined by the energy spectrum for p=l 
normalized by its peak value at w = 2c& in free space radiation; 

v,=g/ 5. I 1 (4) 

It is found that Ei, can be characterized by the four parameters only: 
7, N = the number of undulator periods, 10 = the undulator 
wavelength, and the normalized waveguide transverse sizes A = 
ay& and B = by&. F’g 1 ures I(a) and (b) show some numerical 
examples of c,. The free space spectra denoted by the broken lines 
are drawn for comparison. The parameters y = 2935.42, N = 98, b 
= 5 cm are relevant to those of US.0 at the Advanced Light Source 
(ALS) of LBL[SJ. The regular transverse sizes of the waveguide at 
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ALS are approximately a = 12 cm and b = 2 cm. They are about 10 
times larger than those in Fig. l(b) for both directions. One can see 
that for small values of A and B like Fig. l(a) (although they are 
unrealistically small), a substantial power goes into a small number 
of waveguide modes, each of them corresponding to the peak. 
IIowever, for large values of A and B, the spectrum is smoothed out, 
and approaches the free space result. In fact, we can prove 
analyhcally that both spectra agree with each other in the limit of 
infinitely large structure A.B, N + m. 

From Figs. l(a)-(b), we can derive the following empirical 
criterion for the transverse size of the waveguide in which the 
boundary effects may be neglected (we assume always a > b): 

bzLi9 (5) 

The criterion(5) can be derived also from the following physical 
consideration. In the electron rest frame, the length of the undulator 
is IJy. If the radiation emitted at the entrance of the undulator into the 
purely vertical direction cannot come back to the electron after 
bouncing at the boundary by the time when the electron gets out of 
the undulator, the boundary effects cannot influence the interaction 
pmperties between the electron and the radiation fields. It takes time 
b/c. This value has to be larger than u(p). 

The energy spectrum in the very low frequency region from 0 
to 30 GHz shows that their heights stay up to 10-t of the peak value 
of the free radiation. They might be too small to excite any serious 
collective motion of the beam 
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Fig. 1 Radiated energy spectra (a) for a = 400 pm and b = 67 pm, 
(b)fora=12mmandb=2mm Thefreespaceresultsare 
denoted by the broken lines. 

wake m 

We hem would like to study the action of the radiation on 
particles in a beam If we are allowed to neglect the perturbation in 
particle motions due to the radiation fields while particles go through 
the undulator, we can apply the concepts of wake function and its 
Fourier transform, impedance[4]. Suppose a charged particle 
travelling through an undulator, emitting the radiation. We call it the 
driving particle. Imagine another particle (test article) which moves 
together with the driving particle keeping the txed distance Z = TV. P 
The wake function is defined by the total Lorent force exerted on the 
test particle over the structure from the radiation fields. The test 
particle may go either ahead of or behind the driving particle. In the 
definition of the longitudinal wake function W,(T), we need the 
minus sign in front of the Lorentz force. This follows the convention 
of the beam instability formalism where W,(T) is always negative, 
i.e., the test particle is decelerated, in the vicinity of the driving 
particle. If the test particle is the same particle as the driving one (T = 
0), the longitudinal wake function gives the energy loss of the 
particle due to deceleration by the fields created by itself. This 
e;lergy loss is nothing but the total radiated energy, namely, W,(O) = 

After tedious calculation, we obtain, 

W,(T)= c c &nnpWmpvCr) 
mpZ0 4p4- 

with 

where 

I JI f &,&o)ei~*dw for v = x or y 

&t,,,(cc)et~*d~ for v = z 

(6) 

, (7) 

. Fmnp (8) 

. Fmnp (9) 

,.,,;~(~~~P..[~~-;~]~,P. (IO) 

The explicit forms of Amnpv’s for p = odd are as follows: 

A mnp =$~cos(~v&osxl) 

A mpy=g~c~4?+oJcos(~x1) 

sin(y Y++f YJJzpyg * (*2) 

A mnpz = $ s cos (y x&o{y x1) 
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4sif y+e dQpq&-) * (13) 
(13). 

Some conclusions may be from inspection of Eqs. (6) to 

(1) The uansverse impedances are odd functions of frequency 
w in connection with the change in sign of p: Zrnnpv(ce) = 
-&nn,-pv(-w) 2 0 for v = x or y, while the longitudinal impedance is 
an even function of O: &nepr(~) = Z&,.pz(-W) 2 0. This concludes 
that Wrnr,,,v(0) = 0 for v = x or y which means that a particle receives 
no not transverse force from the radiation created by itself. 

(2) If we take the limit of infinitely long waveguide, WC can 
find that the following relationships hold between the transverse and 
the longitudinal irn@ances for the same set of (mn,p) 

znnpzt~) = T(S) slw&) 9 

~npz(4 = T ($) Zmn&) . 
The above relationships are quite similar to the Panofsky-Wenzel 
theorem except for the factor (W - pou)v instead of w/v. The 
appearance of pou/v might originate to the characteristics of the 
undulated orbit of the particle. 

(3) From Eqs. (l l)-(13) and (6), we notice the 

W$T)=Oifxo=xt=f, ~dW,.(T)=Oifyo=y,=$. (16) 

This is obvious Born the geometrical symmetry of the particle 
trajectory and the waveguide. 

In carrying out the integration in Eq. (7) it is necessary to 
separate the frequent 
according to the stgn o r 

range of the integration in impedance 
T. Namely, the test particle lagging behind 

or going ahead of ihe driving 
r of the impedance. There is t 

‘cle sees different fre@en~y range 
e following: Dhvsical reason for this 

case distit&ion. For simplicity, let us wt%de; the radiation in free 
space. In the electron rest frame, the power flow to the radiation 
must be the same in the forward and the backward directions for 
symmetry. Most parts of the backward radiation in the electron rest 
frame are turned around into the forward direction in the laboratory 
frame by the Lorentz transformation. The plane z’=O perpendicular 
to the z’-axis in the electron rest frame forms a narrow cone about the 
z-axis with the angle 0 = l/yin the laboratory frame. The one inside 
and outside of the cone correspond to the forward and the backward 
radiations in the electron rest frame, respectively. The test particle 
lagging behind the driving particle in the laboratory frame is also 
sitting behind it in the electron rest frame. Therefore it can feel only 
the backward radiation in the rest frame. It sees the forward radiation 
outside of the cone and the backward radiation in the laboratory 
frame. The test particle going ahead of the driving particle sees the 
forward radiation in the electron rest frame and the corresponding 
forward radiation inside of the wne in the laboratory frame. The 
frequency of the radiation fields emitted along the cone is 
wee,,, = pw&. From the above arguments, we can conclude that 
for T > (c)O, i.e., when the test particle lags behind (goes ahead of) 
the driving particle, the integral in Eq. (7) should be done over the 
frequency range from 0 (po$) to po)oyq(-). 

Figure 2 is an example of the longitudinal wake functions. 
Again, the parameters are taken from those of U5.0 at ALS. One can 
see that the wake function is significant only in the very vicinity of 
the driving particle (AT w 2rr/(ouyz)). This is due to rapidly 
oscillating phase factor et@T in the inte rand for a large T. The 
broken lines denote the wake function in tee space radiation. Even P 
for the small value of the transverse sizes, no large difference in the 
wake functions are recognizable, although the energy spectra are 
quite different (see Figs. l(a)). 

If we compare Eqs. (l)-(3) with Eqs.(6)-(13) and may 
neglect the quantities smaller than the leadiig term by a factor f, WC 
canreachthat 

+ (WdO,) +WJO.)) = u = W&l) * 

In fact, the relationship (17) is a physical consequence of the energy 
conservation and can be derived from the following thinking 
exmiment. Sunpose that the test particle follows the driving particle 
at &I infinitesid distance and thei have opposite unit charges. Here 
the test narticle is a real rmrticle. i.e.. it also emits the radiation. Both 
particle; lose the energi U to ‘me radiation, while the test and the 
driving particles gain the energy Wz(0.) and Wz(O+), respectively, 
from the fields radiated by other particle. When they are put 
together, the chages will be neutralized and the radiation is 
suppmxsed. In order for the total energy to be conserved, we need 

W,(o+) + W,(O.) = 2u 

which agrees with Eq.(17). The above relationship is the modified 
form of the fundational theorem of beam loading[4]. 

The identification of the undulator radiation with the wake 
field in beam instabilities seems to be all right. the obtained 
transverse and longitudinal impedances satisfy the Panofsky-Wenzel 
theorem. The difference is only that the wake function is significant 
mostly ahead of the driving particle in the undulator radiation, while 
it is non-zero only behind the driving particle in wake fields. The 
longitudinal wake function includes necessary information about how 
particles will be accelerated or decelerated by the radiation fields. 
From this, one can calculate the bunching of 
explain the stimulated emission process of 

cles and eventually 
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Fig. 2 Longitudinal wake function for a = 400 Pm and b = 67 i.tm 
The fire space result is denoted by the broken line. 
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