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ABSTRACT 

Damping rings for the next generation of linear collider may 
nepd to contain several bunch trains within which the bunches 
are quite closely spaced (1 or 2 RF wavelengths). Methods 
are presented for studying the transverse and longitudinal cou- 
pled bunch instabilities, applicable to this problem and to other 
cases in which the placement of the bunches is not necessarily 
symmetric. 

1. INTRODUCTION 

The present SLAC design for a damping ring in a N 1 TeV 
linear collider using multibunching requires that it contain up 
to ten bunch trains, where each train may contain ten or more 
bunches. This paper presents methods for studying the trans- 
verse and longitudinal coupled-bunch instabilities in a ring con- 
taining bunches in arbitrary RF buckets, circulating in one di- 
rection. The R normal modes of coupled oscillation of n bunches 
have been studied by other authorslm4 for the case of bunches 
symmetrically located on the ring circumference. We present 
a semi-analytic, normal-modes approach, which is quite gen- 
eral in that the bunches need not be symmetrically placed and 
the wake may contain all frequencies of interest. The prob- 
lem of finding the coherent frequencies and oscillation modes 
amounts to finding the eigenvalues and eigenvectors of a ma- 
trix; the elements of the matrix are derived analytically. It is 
then straightforward to solve for the eigenvalues and eigenvec- 
tors numerically. The imaginary parts of the eigenvalues deter- 
mine the long-term stability. However, even if all the normal 
modes arc stable, interference between modes can produce large 
transients. 

Thus it is sometimes desirable to know the motion of each 
bunch as a function of time, given the initial conditions of all 
the bunches. We have two independent methods of obtaining 
this information: (1) Given the coherent frequencies and normal 
modes, the Laplace transform can be used to obtain the mo- 
tion of the bunches, taking the initial conditions correct,ly into 
account. (2) We have also used a computer tracking method 
in the transverse case, to obtain the offset of each bunch as a 
function of time. At least one of these methods is always ap- 
plicable, and in many cases both of them are. Such cases were 
used to verify our analysis and computer codes, obt,aining iden- 
tical results with the two independent methods. Finally, we 
emphasize that the normal modes analysis seems to be reliable 
and practical in all regimes of interest, and if it is not neces- 
sary to know details of the transient behavior, this method is 
sufficient by itself. 

2. NORMAL MODES ANALYSIS 

We assume that there are a total of n bunches in the ring. 
The bunches are taken to be point macroparticles with rela- 
tivistic velocity c on the design orbit so(f). 

2. I Longitudinal motion 

Suppose the orbit of a bunch undergoing rigid coherent syn- 
chrotron oscillations is s(t). Th en the longitudinal time dis- 
placement of the bunch away from its synchronous position is: 

s(t) -so(t) 7(f) = r 
c 
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Denote the deviation from the design energy Eo by: 

e(t) = E(t) - & (2) 
Both 7(t) and ~(2) oscillate with synchrotron frequency w,, 
which is assumed to be much less than the design orbital angu- 
lar frequency wg. The equations of motion for bunch i are: 

and 

cQsin(4fri + hi) - liTad + c1/U.(~~,...,~,,t) 
I 

. 

(4) 
In the first of these equations. o is the momentum compaction 
factor. ‘The first term in the equation for i, is the energy change 
due to RF. the second term is the enerev change due to radia- 
tion loss, and the third term is the ene;iy chacge due to wake 
fields, all per turn, while 7’0 is the orbital period. 

Assuming a total of n bunches and including turn-to-turn 
wake field effects, we have 

n 00 

evt = Ne2 xx W(qTw + Li, + crj,q - CT,) . (5) 
j=1 q=o 

Here I+‘(z) is the wake function, which gives the voltage in the 
cavity (or any other high impedance structure of interest) due 
to a unit charge that passed through it a time t = z/c ago. The 
units of W(z) are [V/Coul]. The time displacement of the jth 
bunch q turns ago is denoted by T~,~. The distance L,j is the 
“equilibrium” spacing between bunches i and j, that is, their 
spacing when CL = rk = ik = ik = 0. We take L, > 0 for i > j, 
and L,, = -L,i. Note that the wake function 14 is zero wh?n 
its argument is less than zero, i.e. when (I = 0 and j < j. 

Let us assume that ci and 7, are small enough that we 
can expand each of the three terms contributing to the energy 
change to first order. If we combine the i, and ii equations to 
eliminate r,, WC obtain: 

?i + Xii, +Wz,7i = -ggj’:$y (~),Toc+L,,5. . (6) 
j=l y=n 

where 

2 
~,,I = 

CXCi/kJ,f COS &i 

Eo To 

gives the perturbed synchrotron frequency of the ilh bunch. 
The quantity \vhom includes only the higher order modes of 
the wake, since we assume there is feedback compensating the 
effects of the fundamental mode. The damping due to radiation 
is represented by: 

We have used the following relation bet,wern the synchronous 
phases do, and bunch spacings L,3: 

eP sin 40, - Cro + n’e* 5 F IlJ(~70c + Lt3) = 0 (91 
J=l q=o 
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[2% shall assume that the Li, are integral numbers of RF 
wavelengths; that is, the presence of wake fields and synchrotron 
radiation loss does not cause different bunches to ride at signif- 
icantly different points on the RF waveform. 

Let us look for solutions in the form of normal modes 
T,(t) = Uie-‘nt (10) 

Here the ni are constant,s, and R is the coherent frequency of 
the mode. Then the equations for the ai’s can be written 

(Cl” + iRXi - Wi,i)U* + 2 Xij(-iR)Uj = 0 , (11) 
j=l 

where ,-qTas (12) qToc+L,, 
We take the q = 0 term in this sum to be zero when ,i = j, 
since it is readily shown that the local wake is independent of 
rr (where r, is the average of T over the bunch distribution). 
Substituting a wake field of the form 

(2 ’ 0) 
(z < 0). (13) 

\ I I 

and prrfornling the sums over 4 yields: 
ikmeikmL,, 

1 _ ,Jhn-s)To 

(i >d 
=- [ m awm 1 - e(ikmc-s)To 

i~:,e-‘k~L.,,(-~kL~-s)To 
- 1 - ,(-Gc-s)To 1 

(14) (ilj) . 
Note that the k, are complex to account for damping of the 
wake. Suppose that ]R] and w,,, are close to the unperturbed 
synrhrotron frequency in, (which may be taken positive or neg- 
ative), so that we can approximate: 

Q2+iA,Q-ufiX2d, Q-d,,+ih 
( 2 > 

. (15) 

M’e also replace ‘(‘I (-in) by xlj ( -iws) in Eq. (11). Then we can 
obtain a set of n coherent frequencies R, each with corresponding 
eigenvector a’, by solving the linear eigenvalue problem 

Ma’=Ra’ , (16) 
where the elements of the matrix M are given by 

Al,, = (Wa - +,, - xv;$ -, (17) 

and a’ is t,hct vector (ur, . . . . a,,). 

2.2 Transwrse nzotiott 

A modal analysis may also be carried out for the transverse 
case. We use the smooth focusing approximation, in which the 
focusing function L is the inverse of the average around the ring 
of the betatron fun&ion. The betatron angular frequency is then 
WB E kc, and the equation of transverse motion for transverse 
offset s is 

iti + Xi, + WjS, = FW(t) , (1s) 
where X is a coherent damping parameter, and For is the force 
due to the transverse wake. 

Although the long range transverse wake force is localized 
to the RF cavities (and any other high-Q structures), we may 
treat it as though an averaged force were distributed around the 
ring, provided that the coherent tune shift is small compared to 
2~. That is, we take the driving term 4v(t) to be: 

F\\,(1) = y t Fis;l(Lij + qToc)r3(f - qT0) (19) , 
i=l o=O . 

\shere ii;“(z) is the wake per unit length, averaged around the 
circumference. For the case of a transverse wake due to, say, an 

RF cavity, we have: 

@‘i(*) = !!g , (20) 

where W’(z) is the transverse wake function in the cavity (units 
[V/Coul/m]). Thus the equation of motion is: 

gi+xii+W$Si = EoTo i=l o=. EC.? 2 2 w'(~,J+~TOC)lj(l-*TO) (21) 

The transverse wake function is of the form 

WL(z) = 
Cm W,’ sin( k,z) (z > 0) o 

(z < 0). (22) 

Looking for normal mode solutions 

Z,(t) = Uje-‘nt , (23) 
we may obtain coherent frequencies and eigenmodes as in the 
longitudinal case, the only difference being that the xlj’s must 
be replaced by: i,ikrnLa, 

1 - e(~kme-~)To 

i,-ik;L,, 
- 

1 _ e(-ikbc-s)To 1 (i>.i) , 
ie~kmL~~e(ikmc-s)To 

1 - e(:kes)To 

i,-ikhL,J,(-ik&c-s)To (24) 
- 

1 _ ,,(-ikkc-s)To 1 (i5.i) . 
3. LAPLACE TRANSFORM SOLUTION 

For defniteness, we discuss the longitudinal case; the trans- 
verse case is analogous if r is replaced by I, ws is replaced by 
UP, and xtl is replaced by &. Defining 

03 

?i(S) S 
/ 

eegtTi(t)dt , (25) 

performing the Laplace traisform on l?q. (6), and rearranging 
terms we obtain: 

n 
c[ 

(s2+Xis+w~)Sij-xiJ(S) 
j=1 1 F,(S) = (s+X~)~~(O)+fi(O) (26) 

Define AIJ(s) to be the quantity in square brackets divided by 
2w,. The roots of det A = 0 are easily seen to be s = ink, where 
the 0~‘s are the coherent frequencies obtained in the normal 
modes analysis. Here we assume, consistent with that analysis, 
that the poles -ink are near -iw,, so that 

2WsAiJ Z [-2iLds(S + iw,) - iW,A,]liij - XaJ(-iWs) , (27) 
from which, as one would expect, we get 

A,,(-iR) = 12fij - nhi, . (28) 
Solving Eq. (26) to obtain the 7, yields: 

6(s) = & .g- &lb + J+Jb-,(O) + +3m * (29) .9 
J=l 

Here cJi(s) is the jith cofactor of the matrix A, that is: for 
det A # 0, (cli/ det A) = (A-‘)iJ. Taking the inverse Laplace 
transform we obtain: 

R cJ8(s)[(s + XJbj(O) + +j(O)l , (30) 

where the contour C is parallel to the imaginary axis and to 
the right of all the poles. Closing the contour to the left and 
applying the residue theorem, we obtain the solutions for the ___ _ 
offsets as a function of time: 

T(t) = 2 c$l 
I 

I=1 

This can be evaluated numerically once we have obtained the 
coherent frequencies 01 as discussed earlier. For very short range 
wakes, there can be numerical difficulties with a straightforward 
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computation of the cofactors, because in this case we need the 
determinant of a matrix whose values differ by many orders of 
magnitude. This situation can arise for transverse wakes when 
strongly damped cavities5 are used. However, when the wakes 
are very short range, the tracking method discussed in the next 
section is very efficient. 

4. COMPUTER TRACKING PROGRAM 

An alternate method of obtaining the r,(2)%, which we have 
found useful in the transverse case, is to use a simple tracking 
program. The motion of the bunches is divided into two parts, 
(1) a kick at the RF cavities (or other localized impedance): 

2, 78 + = x- 

x;+ = x’,- + q qF 2 W((n - jy + qC)xfd(*) , (32) 
g=o JZl 

and (2) a mapping around the rest of the ring (assuming p’ = 0 
at the cavitv): 

(1;) :c*L./zc (-YE, [Z;;) ($J . (33) 

Herk thesuperscript minu’, (plus) on 2, and 2” denotks the value 
just before (after) passing through the RF cavity, and z,“‘~(*) is 

the offset at the cavity of the jib bunch q turns ago. Also, C 
is the circumference of the ring, X is the coherent damping pa- 
rameter, and p is the coherent phase advance around the ring. 
The value of qrnaz must be large enough that the wake fields are 
negligible after qInaz turns; therefore this method is less prac- 
tical than the Laplace transform method when there are many 
bunches and very long range wakes. 
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5. EXAMPLE 

In Fig. 1 we show an example in which the transverse coher- 
ent frequencies are obtained, and the Laplace transform method 
was used to obtain the transverse offset of a bunch as a function 
of turn number. There are a total of 10 bunches spaced 21 cm 
apart in a ring of circumference 155.1 m, the average beta func- 
tion is 2 m, and the coherent damping parameter is 600 set-‘. 
The & of all the wake frequency components was taken to be 
500, for the sake of comparing the Laplace transform and track- 
ing methods (with damped cavities, the Q’s can be much lower). 
The results obtained using the tracking method are indistin- 
guishable from those in the figure. Note there is transient blow- 
up due to interference, even though the imaginary parts of all 
ten coherent frequencies are negative. This transient behavior 
is very important in rings where storage times are only brief, 
for instance in damping rings. In addition, for strong wakes and 
long trains of bunches, this transient can be large enough to 
cause beam loss at injection. 
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Fig. 1. Transverse displacement of the last bunch in a 
train of 10 bvnches. 
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