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ABSTRACT 

The problem of bunch lengthening in electron storage rings 
has been treated by many people, and there have been many 
experiments. In the typical experiment, the theory is used to 
d&ermine the impedance of the ring. What has been lacking 
thus far, however, is a calculation of bunch lengthening that 
uses a carefully calculated ring impedance (or wakefield). 

In this paper we begin by finding the potential well distor- 
tion due to some very simple impedance models, in order to il- 
lustrate different types of bunch ltngthening behavior. We then 
give a prescription for extending potential well calculations into 
the turbulent regime once the threshold is known. Then finally, 
using the wakefield calculated in Ref. 1 for the SLC damping 
rings, combinctl with the measured value of the threshold given 
in ltef. 3. WC calculate bunch lengthening for the damping rings, 
and compare the results with the measurements. 

1. POTENTIAL WELL DISTORTION 

‘The self-consistent beam current distribution in an electron 
machine, below the turbulent threshold, is given by3 

I(t) = liexp (-&+&/I&(,,,,.) , (I) 

with ~0 the natural bunch length, Q’r the slope of the rf voltage 
at the position of the bunch and lGnd the transient induced 
voltage. In our notation a smaller value of t signifies an earlier 
point. in time, wit)h t = 0 the synchronous point for a low current 
bcnm. Thr induced voltage I/llld is given by 

02 

i:,d(t) = - I Cl/(t’)l(t - t’) dt’ , (2) 
0 

wit,11 11’(t) t.llc longitudinal Green function wakefield. The value 
of 111~ notrnalization constant A’ in Eq. (1) is such that the 
complrtc integral of I(t) is equal to the total charge in the 
bunch Q. If \ve know the Green function wakefield then Eq. (1) 
can be solved numerically to give the current distribution of 
the bunch in the presence of wakefields. Since Knd at time t 
rlrpc~~tls only on t,he current at more negative (earlier) tirncs, 
the solution of Eq. (1) is straightforward if we begin at the 
head of tllc bunch (where I<nd = 0) and proceed toward the 
tail. Taking the derivative of both sides of Eq. (1) yields an 
altcrnativra form of it: 

i -=-4+_ Knd 

I CT; v7& 

In what follows, all distances will be given in terms of 00. 
Thus t,hc indrprndrnt, variable becomes I = t/so. Of partic- 
ular int,ercst will br the rms length fl,. the full-width-at,-half- 
tnaxitnunl z,P~~~~.~~, and the centroid shift (z) of the current 
tliYt,ribution. The ratio of the first, two quantities is a mra- 
sure of the similarity of the distribution to a Gaussian. Due 
to c-nergy conFpr\-at ion, t,he t,hird quantity, when multiplied by 

‘, 
-1 ,/a~, gives the higher mode losses. 

2. SOME SIMPLE IMPEDANCE MODELS 

Over a frequency interval, the impedance of vacuum cham- 
hclr clrmrnts can often be characterized by a simple rlectrical 
circuit calement---an inductor, a resistor, or a capacitor. In t,his 
sr,ction WC study the potential well distortion when the whole 
ring can IX, charact,crizcd bv t,liese simple models. 

*IYork supportrd by the Department of Energy, contract 
1111 AC03 76SVOOj15. 

2.1 An Inductive Impedance 

The SLC damping ring impedance is dominated by 
objects-such as shallow transitions, shallow cavities, bellows, 
or bumps in t,he vacuum chamber---that can be modelled by 

an inductor over a range of bunch lengths.’ For a purely induc- 
tive object the induced voltage is given by rind = -LdI/dt, 
with the constant L the inductance. We note that this model is 
non-physical in that it is losslrss. AltJhough the solution of the 
potential well problem for an inductive impedance is given in 
Ref. 3, we present it here again in order to complete our picture 
of bunch lengthening in storage rings. 

For a purely inductive impedance, Eq. (3) can be writtrn as 

I “Y 
y=-l+Y ’ 

with prime denoting the derivative with respect to z = t/no. 
The normalized current is g&n by y = Ll/(poi); the normal- 

ized charge r (the complete integral of y) equals LQ/(i’oi). 

The normalized induced voltage C,nd = v,,d/(i/,,fl,) = -y’. 

The numerical solution of Eq. (4), for several values of r, 
is shown in Fig. l(a). Note that the charge distribution for a 
pcarfect inductor is symmetric about z = 0 (since there are no 
losses) and is more bulbous than a Gaussian distribution. From 
Eq. (4) it is apparent that the solution is parabolic wherever 
y >> 1. In Fig. l(b) we display o‘, and rf~~~.~~/2.355 (the 
dashes) as functions of f’. For large currents err varies roughl> 
as r1j3. 

0’ 
0 20 40 

3 e9 I-‘ 6281 A6 

Fig. 1. An induciiue imp~.dance: (~0 the bunch shape for SC r~elal 
values of bunch populntion, and (b) ihc bunch lrngth vnrintion 
as a function of current. 

2.2 A Resistirre Impedance 

Deep cavities, such as the rf cavities of the damping rings, 
tend to be resistive or somewhat capacitive to a beam over the 
normal range of bunch lengths. For an ideal resistive object, 
t,hc induced voltage can be written as \/,,,d = -fR, with the 
constant II the resistance. Note that an i&al rcsist,or is also 
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not physical; there must be a phase shift, even if slight, be- 
tween the bunch current and the induced voltage of a vacuum 
chamber object. For a resistive impedance, Eq. (3) becomes 

Y’=-(X.YY)Y 7 (5) 

with y = H/(cao) and r = RQ/(i’ai). Not,e that v;,d = -y. 

Fig. 2(a) displays the solution to Eq. (5) for several values 
of r. As the current is increased the bunch tilts forward (up 
the rf wave) by an ever increasing amount, in order to compen- 
sate for the increased, higher mode losses. Fig. 2(b) shows g, 
and z~~~~~~/2.355 (the dashes). We see that the bunch length 
increases only very slowly in a resistive machine. The dots give 
the centroid shift (z) of the bunch. It can be approximated by 
(x) = -r/(2&‘), which is the centroid shift, assuming that the 
bunch shape does not change with r. We note that Papiernik 

et alp have solved the potential well problem for the impedance 
of a pillbox cavity, and have obtained very similar results. 
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Fig. 2. A resisfil>e impedance: (a) the bunch shape for several 
values of total charge and (b) the change of bunch length and 
centroid position (dots) with current. 

2.3 A Capacitive Impedance 

The wakefield of very short bunches in deep cavities is some- 
what capacitive. For an ideal capacitive vacuum chamber ob- 
ject, the induced voltage is proportional to the integral of the 
current, with constant of proportionality -l/C, and C the ca- 
pacitance. This model is unphysical in that it predicts that the 
energy loss of a bunch depends only on the total charge Q, and 
not on the peak current. For a purely capacitive impedance, 
Eq. (3) becomes 

z 

y’ = -y[z + J ~(4 dz’l , (6) 

with y = I/(l&,C) and r iaQ/(i$f~oC), The solution to 
Eq. (6) closely approximates a Gaussian that has been short- 
ened and shifted. Since the energy stored in a capacitor is 
Q2/2C, the centroid shift is given by (z) = -r/2. Figure 3 
shows the bunch length dependence on I’. By substituting a 
gaussian into Eq. (6), we can arrive at an analytical approxima- 
tion of the bunch shortening, which for small current becomes 

x i -rj&T. w e note that bunch shortening has not been 
zcserved in storage rings, except at low currents in SPEAR, 

when the ring had many rf cavities5 

0 1 2 3 

3.89 r 6281A7 

Fig. 3. Bunch shortening for n capacitice impedance. 

3. THE INSTABILITY THRESHOLD 

At some bunch population, there is an inst,ability. The ef- 
fect of this instability in an electron storage ring is to increase 
the energy spread of the equilibrium distribution. This is ob- 
viously a nonlinear process. As the bunch length increases, the 
bunch peak current decreases which decreases the longitudinal 
forces. Radiation damping then serves to reduce the bunch 
length. The competition between radiation damping and quan- 
tum excitation together with longitudinal instability leads to 
some equilibrium energy spread. The bunch length is related 
to this via the rf voltage plus potential well distortion. 

Boussard’ conjectured that the longitudinal instability in a 
bunched beam is due to a coasting-beam-like instability within 
the bunch. Qualitatively, the argument goes as follows: Con- 
sider an impedance which induces an instability which has a 
wavelength small compared to the bunch length. If the growth 
time of the instabilit,y is short compared to a synchrotron oscil- 
lation period, then the center of the bunch looks like a coasting 
beam except, of course, that it has a high peak current. There- 
fore, to estimate the threshold for instability one might use the 

coasting beam threshold’ but replace I by Ipeak. 

The issue of the applicability of a coasting beam instability 
criterion to a bunched beam was studied in detail by J. M. Wang 

and C. Pellegrini! They found that one obtains a coasting beam 
like instability condition provided that: 

1. The impedance is broad band relative to the bunch spec- 
trum (Fourier transform of the line density). 

2. The growth rate is much greater than w, (fast blowup). 

3. The instability occurs at wavelengths much shorter than 
the bunch length. 

Actually, the threshold which they obtain looks like the 
threshold for a coasting beam, but it has a different interpreta- 
tion. It is a sufficient condition for no fast blowup. They also 
show that one obtains the usual type of coasting beam stability 
boundary except. of course, the boundary is for fast blo%rup. 

The “threshold” condition for a Gaussian bunch is* 

e2jW(n)14 < 1 
2~r~/~a,~yE~r,2 - 

In Eq. (7), we have substituted the peak current for a Gaus- 
sian distribution. In this equation, (Jo must be interpreted as 
the actual bunch length. Since we have only a sufficient condi- 
tion for fast instability, we only use Eq. (7) for scaling purposes. 
Unfortunately, we know of no reliable calculation of the precise 
threshold, although this should be possible using techniques in 
Ref. 8. 

To proceed, we take the threshold from experimental data, 
and above the threshold we use Eq. (7) to scale the energy 
spread as N I 1 

113 Of = UfO 
iVth 

(8) 

Potential well bunch lengthening is then used to calculate the 
bunch form in a self-consistent manner. 
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4. BUNCH LENGTHENING IN THE SLC 
DAMPING RINGS 

The SLC damping rings have many changes in vacuum 

chamber cross-section. In an earlier paper’ the longitudi- 
nal wakefields of the different vacuum chamber elements were 
computed for a short-l mm-Gaussian bunch using T. Wei- 

land’s computer program TBCI.’ All the individual contribu- 
tions were then added up, giving a pseudo-Green function wake 
that represents the entire ring (see Fig. 4). By substituting this 
function into Eq. (1) we can calculate the current distribution 
up to the turbulent threshold current. Knowing N,,, we can 
extend the calculation to higher currents if we replace co by 

ffo(N/n’,h) ‘j3 in Eq. (1). 
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Fig. 4. The wakefield of a 1 mm Gaussian bunch in the SLC 
damping rings, and our Green function {dots). 

\Ve need to keep two things in mind when using our wake- 
field. First, since it represents the response to a 1 mm Gaussian 
bunch, it will be unable to resolve variations in bunch shape 
over distances that are short compared to 1 mm. But this lim- 
itation should not be a problem for our calculations because 
(ij cog is large compared to 1 mm, (ii) the bunch becomes even 
longer at higher currents. and (iii) we expect the bunch forms 
to be smooth. Second, in order for us to use the wake as a 
Green function, the front of it needs to be modified so that it 
is zc’ro for 1 < 0. Li:e have evidence that the results (presented 
t~elow) are not very sensitive to the details of this modification, 
provided t.hat the changca are localized near t = 0 and that the 
area under the curve remains unchanged. For our calculations, 
FI’C havr chosen to refiect the leading tail to the back, and then 
to add it. to the existing wake (see the dotted curve of Fig. 4). 

Figure 5 displays the bunch lengthening and centroid shift 
calculation results for the SLC damping rings when Vrr = 
0.8 hZV. (The rf frequency is 714 MHz.) Length dimensions are 
again @vu1 in units of erg (at this rf voltage cog = 5 mm). As 
for t,llc- intlrlct,ivtb modrl, the distribution is more bulbous than 
a Gaussian. If we take the effective inductance of the ring to 
1~ .50 nII (SW ltcf. 1) we find that at 1%’ = 1.5 x 10” 0, = 1.33 
a11t1 .r~ll,li,i, = 3.G!) for the inductive model, which compare 
~vell wit11 tile values of, rcspcctively, 1.!3S and 3.93 found here. 
(‘I.0 appi,osimate the resistive behavior as well would rc,quirc a 
Inore complicated model.) From Fig. 5(b) we see that there is 
a siguificaut aniount Gf higllcr lllode lossrs. 

Energy spread measurements performed on the North 

dalnping ring found that Nth z 1.5 x 10” at I$r = 0.8 hfV.2 
Taking this threshold value, the bunch lrngt hening calcula- 
tions were t,xtendcd into the turbulent regime (indicated by thr 
dashes in Fig. 5j. We see that at N = 3 x 10” the rms bunch 
length is increased by 70%. Very precise measurements of the 
bl:~~cli shap<% as function of current have also been performed 
at l)f = 0.S XIV, using the bunch compressor of the Ring-to- 
I,il!ac jlU’1,) trarlsfvr lille ailtl a downstream digitizablr video 

‘2 
SC’, i‘l’ll. III atltlitioll, tllc hy11cIironou3 pilax tlcpcntlcnce on cur- 
11’111 11irx IWCII Iw<w1llc~d. ‘I’t 1~’ rciults of these nicas~~rct~~c~~ts arc 
iuclic~atcd l,y t,t;c, plol,ting synlrols in Fig. 5. 

hally. ill Fig. 6 \ve prcserkt tile buncll sllapcs for 
buiicl~ pol)ulations of N = 11.7, 1.2, 2.1 and 2.9 x 10”. 

(a) 1 

(b) 
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Fig. 5. (a) Bunch lengthening, and (b) the centroid shift calcu- 
lated for the SLC damping n’ngs at V,f = 0.8 MV. The symbols 
indicate the measurement results. 
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Fig. 6. The calculated damping ring bunch shapes for several 
current cal,ues, when V’r = 0.8 Ml’. Superimposed on the cur-ue~ 
are measurement results. 

The abscissas give I = t/go, the ordinates are y = irZo/(i/oo) 
with 20 = 377 R. Superimposed on the curves are the digitized 
measurement results. The fluctuations in the data (especially 
at the peaks) are due to nonuniformity in the response of the 
screen. Considering that there are no fit parameters, the agree- 
ment between the data and the calculations is quite good. 
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