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In this paper we present a useful numerical 
method tc solve a two-dimensional behavior of a fuel 
pellet in inertial confinement fusion. Example 
computations are also presented for an implosion phase 
of ICF pellet illuminated by light-ion beam. 

Introduction 

In inertial confinement fusion (ICF) one of the 
most important problems is to find a way to implode a 
fuel pellet in a spherically symmetric manner. In 
order to study the asymmetric implosion at least a 
two-dimensional computer code is required. Two- 
dimensional analyses have been also performed to study 
the assymmetric implosion. In addition three- 
dimensional computations have been also done. So far 
these researches about the nonuniform implosion have 
presented a limitation of nonuniformity amplitude in 
order to obtain a reasonable fusion output gain from a 
reactor size pellet; the reults show that only a few 
percent of the nonuniformity amplitude may be allowed 
for a direct-driven pellet. However, in an actual 
situation the amplitude of the nonuniformity may be 
larger than a few percent. We need some smoothing 
effects, like a radiation transportation or a 
geometrical smoothing effect. in this paper we 
present a useful numerical method to solve the two- 
dimensional behavior of a fuel in inertial confinement 
fusion. 

Another problem in a multi-dimensional 
computation is a mesh distortion. A fuel density of 
an ICF pellet changes up to about a thousand times of 
the initial density in an irrplosion process. The 
change in radius (r) direction is most severe. In 
such a case we need the Lagrangian mesh in the r 
direction at least. If we also use the Lagrangian 
mesh in the azimuthal direction in a two-dimensional 
code, we must avcid a severe mesh distortion or a 
overlapping by using a resorning technique frequently. 
In order to avoid this, we developed a method in 
which the mesh velocity can be selected arbitrary, for 
example, the Lagrangian mesh is employed in the radial 
direction and the Eularian mesh is employed in the 
azimuthal direction. A Mixed-Eularian and Lagrangian 
(MEL) metho was previously developed in the x-y (or r- 
z) coordinate. In order to simulate the plasma sphere 
we developed our method in the spherical coordinate. 
Our method is focused on the MEL method in the 
spherical coordinate. However, the mesh velocity is 
basically arbitrary in our method as pointed out 
briefly. So we can select the mesh velocity to avoid 
the severe mesh distortion. 

A useful numerical method presented in this paper 
is based on a three-temperature fluid model, which was 
presented In several previous papers. The physical 
base of three temperature model was also discussed 
previously in those papers. 

Simulations examples are also presented for an 
imploding phase of a pellet in light-ion-beam (LIB) 
inertial confinement fusion (ICF). 

Basic Equations and Numerical Method 

The equations employed are the usual fluid 
equations to describe a plasma: The equations of 
conservations of mass, momentum and energy are as 
follows: 

ap/at+vqw=o (1) 
a(p) /at+v(upu)=-vP (2) 

a(pel) lat+v(upel)=-P1vu+si (3) 
Here p is a mass density, t the time, U the velocity, 
P the total pressure, e the specific internal energy 
and S the source term including an energy 
transportation. Tha suffix 1 takes i, e and r for 
ion, electron and radiation, respectively. The model 
used in this paper is the three temperature model. 
Therefore ?&q.(3) shows a. set Of three equations for 
ion, electron and radiation. The total pressure ? in 
Eq.(2) is the sum of the pressure of ion, electron and 
radiation. The source terms are descried as follows: 

Si=-Kie+Ii (4) 

Se=He+Kie-Kre +Ie (5) 

Sr=Hr+Kre, (6) 

where Kie and Kre are the energy exchange rates 
between ion and electron, and between radiation and 
electron, respectively. The electron and radiation 
heat conductions are shown by Hl=-vFl(l=e,r), where Fl 
is a heat-flux. In addition, the source term includes 
the heat surce coming from outside the system 
concerned, for example, light-ion-bear deposition. 

In order to solve these equations numerically, we 
use a control-volume method and integrate Eqs.(l-3) 
over a volume V whose surface is S moving with a 
velocity w. Then we obtain 

dM/dt=-&dS(u-w)P, (7) 

dP/dt=-&dS(u-w)pu-JSdS') (5) 

where M=ldVp, p=ldVpu and El=ldVpel. If w=o, Eqs.(7- 
9) show the Eularian scheme and if w=u, the Lagrangiar. 
scheme. We Simulate a part of a sphere, that is !-A 

cR/2<@<A$I/2, O<E<n/2). In the @ direction we assume no 
motion. 

This control-volu-e method generally has a 
numerical error of AE and @ for a direction of 
velocity in the 8 and @ directions, respectively. 
We can eliminate this error of A0 in the azimuthal 
direction, if we modify Eq.(8) to an equation for an 
ang2ar momentum L to solve ~8. 

dL/dt=-JSdS(u-w) [rx(pu)] -JSrx( dS3) (10) 

Only the angular momentum in the y direction Ly is 
solved. 

ue=rCO=rLy/I, (71) 

I=IVdVpr2=IVpr4sin8drded~ (12) 
where I is an inertial moment and L) an angular 
velocity. If one try to solve US by Eq.(8) directly, 
one has a difficulty to define the azimuthal direction 
in the computational space which has usualy finite 
size in the azimuthal direction. However, we can 
clearly define the direction of the angular momentum 
LY without any difficulty and ambiguity to find ug. 
Therefore we use Eq.(lO) instead of Eq.(S). 
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In the $ direc:ion we have still the same kind of 
numerical error of A@ as described above, though we 
assume that physical quantities are homogeneous in the 
directicn. In order to minimize this error we should 
take& to be less than A@. 

The mesh velocity w is arbitrary. However, for 
our purpose the Eularian mesh is appropriate In the 
azimuthal direction. Tterfore we select now ti=O. In 
this ur is solved by 

d~,/dt=[a/a=+w,a/a~~U~ (13) 
=[-(~.-~,)aia~-oa/Sei~~.t~o)2-3~/ (par) . 

The left handside of the energy eq;lation is 
rewritten by assuming ;hat the phjrsical CpantitieS are 
constant in the small volume V of one mesh. 

dE1/dt=M(CldTl/dttBldp/dt) +eldM/dc, (14) 

where Cl is the specific heat and Bl is the 
compressibility. One can obtain Cl and Bl from an 
equation cf state. We used a fitting formula to the 
SESAMI library as an equation of state. A data for 
the charge state includes the thermal ionization by 
;he corona and Saha models, and pressure ionization by 
a fitting formula. 

In order to obtain the explicit expressions for 
zqs.(7-91, we specify wr to satisfy the Lagrangian 
condition in tie r direction, though we use the 
Eularian mesh in the azimuthal direction. This means 
the introduction of the MEL method. The MEL method is 
appropriate for our purpose. In this special case wr 
should satisfy the following equation: 

wr=ur-Wdr/do. (151 

From this equation we find the mesh movement. 

Application to Pellet Implosion Simulation in 
Light-Ion-Bean Inertial Confinement Fusion 

In crder to demonstrate a usefulness of this 
method for a two-dimensional analysi of a plasma 
sphere we preformed a numerical simulation for an 
implosion phase of an ICF pellet illuminated by' light- 
ion beam. 

A LIB-ICF pellet employed in this section in 
presented in Fig.2 and consisted of three layers of 
Pb, Al and DT. 

Only the proton beam is considered as a LIB in 
this paper. A particle energy employed is 5Mev and 
the total energy of LIB impinging a pellet is 5MZ. 
The LIB pulse duration is 40nsec. The pulse rasing 
time is 15nsec and the beam power increases with a 
function of (time)'. During 15nsec and 4Onsec the LIB 
power is constant and '67TW. After 4Onsec the beam 
power is zero. The LIB energy deposition is computed 
by using equations for proton stopping power iccluding 
the plasma effect. In this paper we assumed that all 
protons impinging the pellet surface normally. 

The nonuniformity is introduced by changing the 
LIB number density as follows: 

n=nO+0.5r.06[c0s(m6)-1], (16) 

where fi is the amplitude of nonuniformity and m the 
mode number. 

Figure 3 presents implosion patterns in a 2mm 
square at time t=4Cnsec and 46.7nsec which is the void 
closure time. The solid mesh lines show the DT fuel 
and dashed lines the Al layer. The Pb layer is 
outside of this figure. In this example the amplitude 
of the nonuniformity is 6% and the mode number m is 2. 
The total mesh number employed in this example is 30 
in each r and directions. Figure 4 shows ur of the 
innermost mesh in the r-t domain. Figure 4 shows that 
a part illuminated by a lower power relatively has a 
larger ur near the void closure time. This part is 
shown in Fig.3 as a depression. At the beggining 
stage of the implosion this depression part is 
compressed by a weak uo or a slight movement in the8 
direction of a side part of this depression. Then the 
pressure increases at this part and the inner DT fuel 
near this part is accelerated inward like a jet as 
shown in Fig./+. We call this as a jet effect in this 
paper. This is the nature of a nonuniformity- 
imploding fluid shell and a kind of geometrical 
smoothing effect. A precise study of this jet effect 
is not a theme of this paper and should be presented 
in another work. Figure 5 presents peak-temperature 
profiles is the Al layer at t=40nsec as a function of0 
; solid line shows a result in which a radiation 
transport is included in both the r and 0 directions 
and a dotted line shows a result including a radiation 
transport only in the r direction. The solid curve 
presents a clean radiation smoothing effect in the 
direction. The nonuniformity is smoothed down to 0.9% 
at t=lOnsec. AT, the beginning YO the nonuniformity 
was 6%. This radiation smoothing effect is major but 
a study about this is also not a theme of this paper. 
The precise reserch about the geometrical and 
radiation smooting effect will be discussed in the 
next work. 

This simulation results for a pellet implosion in 
LIB ICF demonstrate that this numerical method 
presented in this paper is useful for the analyses of 
two dimentional behavior of a plasma sphere or a 
spherical shell. 

Discussions 

We developed a two-dimensional-numerical method 
to solve a behavior of plasma sphere or a spherical 
shell. We also presented example simulation results 
for an ICF pellet implosion illuminated by light-ion 
beam. 

In this numerical method we could avoid a severe 
mesh distortion or mesh overlapping by introducing an 
arbitrary mesh velocity, though in this paper we 
described a MEL method as a special case. We also 
introduced a new dependent variable of angular 
momentum L to compute uO. By introducing L we 
eliminated a numerical error described in the second 
section. 

The example simulation for a pellet implosion in 
LIB ICF demonstra;ed that this numerical method is 
useful t3 solve a two-dimensional behavior of a plasma 
sphere or a spherical shell. 
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Fig.1 A computeational region for a plasma sphere or a 
spherical shell : (095n/2, -hs/25W@//2). In order 
to solve uo an angular momentum Ly directing to the y 
direction is used. 

ii 
Fig.2 A pellet structure employed in the third section 
as an example. Light-Ion Beams impinge the pellet and 
deposit their energy mainly in Al and partiy in Pb. 
The Pb behaves as a temper and the Al as a beam energy 
absorber. In addition an inner part of Al facing to 
DT fuel behaves as a pusher and a radiation shield. 

Fig.3 Implosion patterns inside a 2mm square at 
t=iOnsec . Solid mesh lines show the DT fuel and 
dotted mesh lines Al. In this case the amplitude of 
nonuniformity is 6%. 

Pig.4 The radial velocity ur of the innermost 
Lagrangian mesh. Near the void closure time a jet 
effect was observed. 
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Fig.5 Peak temperature profiles in the Al layer at 
t=&Onsec as a function of 0. A dashed lice shows a 
result without the radiation transport in the8 
direction but with it in the r direction. A solid 
line shows a result with the radiation transport in 
both the 0 and r directions. The radiation transport 
smoothed the initial nonuniformity of 6% down to 0.9%. 
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