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Abstract 
Analytical expressions are given in order to help understand 

phase space painting used in H- injection. Simple models will make 
it possible to analytically study both one and two dimensional 
paintings in the transverse planes. The longitudinal painting will be 
treated separately. 

I. Introduction 
H- injection is becoming widely used in circular proton 

accelerators. This injection scheme makes it possible to inject a 
beam at the point of phase space already occupied by previously 
injected beam. Therefore an intense proton beam can be 
accumulated into the ring without largely increasing the beam 
emittance as well as the physical aperture of the ring. In addition, it 
is more desirable to incorporate the phase space painting into this 
scheme to cope with the space charge effect and to reduce the hitting 
probability at the stripping foil of H- (or HO). This combination of 
H- injection and phase space painting will also be employed in the 
Compressor/Stretcher Ring of the JHP (Japanese Hadron Project) 
111. 

The aim of this paper is to help our understanding about 
Dhase soace oaintine. Under simple assumptions, we will first r ~, 1 

obtain relatiois betwien the real space densit; and the phase space 
density for both one- and two- dimensional transverse betatron 
motions. In this analysis, however, the transverse beam size due to 
&p/p has not been taken into account, since it is relatively small for 
the JHP ring (at least until bunch rotation does work to compress a 
beam pulse [l]) and probably for other high intensity machines. 
Second we will study the phase space painting for a beam injected 
with a small emittance, and thereby obtain the time trajectories of 
injection point for various real space densities. Finally, simple 
analyses of the longitudinal painting will be presented. 

Here we should note that from the point of view of the space 
charge effect the most favorable distribution in the transverse 
direction is a uniform distribution, while for the longitudinal 
direction it may be the one with a linear gradient, for which the 
distribution itself becomes parabolic, or may be the one proportional 
to the form of RF Voltage. 

Fig. 1 Coordinates in the Normalized Phase Space 

Assumptions 
We put the following assumptions throu.ghout this paper. 
(1) the motion of a particle in the rmg is circular on a 

normalized phase space of betatron or synchrorron oscillation. It 
just holds for the linear equation of motion. In case of synchrorron 
bscillation, it is only valid for a small amplitude, but not-for a large 
amplitude. However. the followine analvsis mav still be aoolicable 
foran amplitude not too large, since the assumpt;on does &;impose 
that the frequency of oscillation be independent of its amplitude. 

(2) As soon as a beam has injected, its phase space 
distribution becomes uniform in the 0 direction (Fig. 1). It would be 
justified by considering that any integral multiple of tune may not be 
commensurable with an integer, at least with a small integer, and that 
the tune usually has a dependence on the amplitude of oscillation in 
an actual ring. Since the synchrotron oscillation is relatively slow, 
however, it may take a longer time for the longitudinal distribution to 
become uniform in the 0 direction. 

(3) the injection point stays on the x-axis in the normalized 
ohase suace. Even if so assumed, it does not lose generality, 
because&of the assumption of (2). 

(41 the emittance of iniected beam is infinitesimal. A beam \ , 
injected from a linac would u&ally have an emittance much smaller 
than the beam circulating in a ring. 

II. Phase Space Painting for Betatron Motion 

One Dimensional Case 
The density n(x) in the normalized real space has the 

following relation to the density p(x) in the normalized phase space 
[2, 31: 

a a 

n(x) = 2 
I I 

p(r)+ -~ 2Pcr) 
&iyTrdr 3 

(1) 
sin 6 

Ix Jx ‘- .- 
where a is the radius of the beam. Hereafter both real and phase 
spaces mean their normalized spaces. We now put p(r) = f(r2) and 
n(x) = g(x2), and further a2 + a, x2 + x and r2 -+ r. Then Eq. (1) 
becomes, 

When f(y) is given, g(x) is found directly by performing the 
integration in Eq. (2). On the other hand, when g(x) is given, Eq. 
(2) becomes the Volterra’s integral equation of the first kind (or a 
variant of the equation on Abe! problem) [ 3,41. For example, when 
the real space density is uniform, i.e., g(x) = constant, f(x) or p(r) 
can be found by solving the integral equation of Eq. (2) , 

1 1 
Case(l.1): f(X) = * or p(r) = ~ . 

425 
In most cases, however, we can guess their solutions by direct 
integration instead of dealing with the integral equation. Though 
already well known, two more examples are given here for 
convenience. 

Case(l.2): p(r) - &(a* - 9) , n(x) 

Case( 1.3): p(r) =1/(,2-?)P, n(x) ‘x (a2 - x2y - p 

Two Dimensional Case 
Since the phase space density is assumed to be uniform in the 

0 direction, it is written as, 

p = p(r1 J2) T (3) 
where rl and r2 are taken as shown in Fig. 1. Then the real space 
density can be expressed in a similar manner as one dimensional 
case, 

I- I- 

(4) 

The integral domain ,‘,t shown herd depends on cases under study. 
A few cases are presented in the following. 
&se (2.11: rectmula c ass sectJon rth a &o 

In this case Eq. ;4;may be red&d to, 
rrn dew 

a 

I 1 

h 

& f(E = constant. 

x Y 
The solution of f(a,P) is obtained in the same way as one 
dimensional case, and ther? p(x,y) is given as, 

1 
p&y) = -- 1 

2/a2,T?lh2-y? 
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. 
r circular) cross sectton with a non-lmrfa ’ r Two Dimensional Case 

p(a,@-1(1-$-z/, n(x,y)=jl-$-$jiep, (7) 

wherep < 1. 
Case ( 
!=t.emG2 

” .3). ellintd (0 r circular) cross sectton 

The phase space density is given by a delta function , 

~(a#) - 6(1 - a*/a*-P*/b*) 
This density distribution is that of Kapchinskij-Vladimirskij 151. 

(8) 

III. Trajectory of Injection Point 
In this section, the position and angle of injection point are 

described relative to the center of beam in the ring, so that the center 
of beam is assumed to be fixed. 

One Dimensional Case 
If the phase space density after injection is to be p(r), the 

number of injected particles per unit length of x-axis, j(x), must 
satisfy, 

j(x) = x. P(X) (9) 
Here the r in p(r) can be regarded as equal to x because of the 
assumption of (3). The factor of x in Eq. (9) comes from the 
weighing factor of r in polar coordinates. When the injection point 
moves by dx, the number of injected particles dN becomes, 

dN = j(x). dx (10) 
Now we assume that the current of injected beam is constant. As 
dN is then proportional to time interval dt, we have, 

dt-j(x),& or dx/dt= l/j(x) . 
In the following, two examples are presented. 

Case (I. I ): n(x) constant 
In this casz, j(x) is given by, 

(11) 

c-z- 
A-4 4&- . 

Then the expression of (11) leads to, 

x* (t- 7-p _ 
-+--1, or x=4=, 
a2 T* 

(12) 

(13) 

where T is the injection time, 
Case (I .3j: n(x) (a222.)1’2 -P 

The result=becomes, 

I I 
1 

.2-,*=.* 1-k 1-p 
In Case (1. l), the densit); becomes uniform only after 

injection is completed, while the change of density during injection 
is described by, 

2 
I 

x*-x* 
n(x) = -sslnel~ T 

IT V a2-x2 
where X is the position of injection point and the region of x less 
than X is only occupied by particles. 

I 
Fs25 

i 
+------. Y-'-G* j 

! 

Fig. 2 Schematic Diagram 
for a Trajectory of Injection 
Point 

x 

+ 

Fig. 3 Mountain View of a 
Two-dimensional 
Uniform Distribution by a 
simple simulation 
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To realize a certain density distribution of p(rt,rZ) in the 
phase space, the number of injected particles per unit area of real 
space, j(x,y), must satisfy, 

j(w) = v P(xY) (16) 
If the phase space density is nowhere zero, the injection point has to 
be swept over the cross section to obtain a desired distribution. For 
its trajectory we can think of many patterns; for example we may 
inject the beam slowly increasing the position of the injection point 
in the radial direction while rapidly swinging it in the 0 direction, or 
vice versa. Three examples are presented here. 

wrth a uniform 

with the x position 
injection point increase slowly 

swinging rapidly. Then the y position may be 
regarded as constant during a cycle of the swing in the x direction. 
Thus the equation of the x position is reduced to that of one 
dimensional case, i.e., Eq.(13) with T a half period of the swing. 
With this solution, the equation of the y position becomes, 

Y dy ~ = (a function oft). dt _ 
q 

(17) 

The function oft in the equation is rapidly changing function, so that 
we may average it out for the motion in the y direction. Thus Eq. 
(17) is also reduced to one dimensional case. . 

12.2): circular CrossSecnon wrth a non _ . u&orm de@ 
First we treat the trajectory as shown in Fig.2. The solution 

of the x position is found in the same way as Case (2.1), 

x = lLz&l_rlT1)l~(l - p) , (18) 
where Tt is a half period of swing in the x direction and is assumed 
to be independent of the y position. By averaging the motion of the 
x position over a period of its oscillation, the motion of injection 
point in the y direction becomes, 

y =@/I -(I +r)1K-P) (19) 
It should be noted that the expression of x in Eq. (18) is valid only 
for a half period of Tt, but the whole pattern through injection can 
be easily inferred. 

Second, we give here only the result in the case that the 
injection point is increased slowly in the radial direction, while in the 
0 direction it is swung rapidly, 

sin 8 = Gj+Ti , 

(l-@-P jl-z)l-p 
(20) 

t/T- 1 

2-P 1-P ,=u.-P)(2.-P) ’ 
2 = (r/a?. 

. ‘. &ma1 cross seem wrth a 
In this case j(x,y) is not zero only at thk border of the beam 

cross section. Putting x = a.rcos6 and y= b.r.sine, then j is given 
by, 

j(xy) 0~ sin 0 cos 0 . 
Hence the trajectory of the injection point becomes, 

(21) 

X=U 
4--- 

l-f_, y=b’lir/T. 
T 

(22) 

A simple numerical simulation has been made for this case, and its 
result is shown in Fig. 3. The blurred edge of the distribution in the 
figure is due to the coarse 20 x 20 meshes. 

From the above cases, it can be said that the most favorable 
tmnsverse distribation, namely uniform distribution, is the one to be 
realized most easily. 

It would be worth while making an almost self-evident 
remark here on a relation between the injection point in the 
normalized space and the deflection angles of bump magnets at the 
injection line or in the ring. Let 9 stand for the deflection angle of a 
magnet. Then the angles of the other magnets should be 
proportional to 8. Thus the position xp and angle x’~ of injection 
point in the un-normalized phase space are also proporuonal to 8, 

xp=e,x< =e. 
As a result, the “emittance” of injectkn pint becomes, 

(23) 

(24) 
B 

On the other hand, the “emittance” is the square of the amplitude of 
the injection point on the x-axis in the normalized space. The 
injection point in the normalized space is, therefore, proportional to 
0, and so it may be regarded as identical to 8. 
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IV. Longitudinal Painting 
The beam is injected onto the longitudinal phase space 

usually with a long strip in the direction of RF phase. Therefore, 
only controllable may be the energy of injected or stored beams. 
Then we will study here about what the longitudinal distribution in 
the ring looks like when a beam with a simple energy distribution is 
injected, rather than how to inject it to get a desired distribution. 

Under the assumptions in Sec. I, when a beam is injected 
with off momentum, zero energy spread and a distribution of n(z) in 
the direction of RF phase (the z direction), the phase space density 
becomes, 

P(r) = 
n(z) 

2nr lcos 0 I ’ 
(25) 

where tan0 = uz (see Fig. 4). In the following examples, the n(z) is 
assumed to be constant in the beam. 
&J&J): right momentum tth e o ene pv s.mead 

The real space densityngc(z; L give: by, 

I 

a 

go(z) a 
d&7 

JZ 

where a is a half bunch length. Hence the go(z) becomes, 

go(z) = & cosh-l(a/z) (z>O) , 

where the go(z) is normalized as, 
l-0 

J 

go(z)dz = 1 . 
-a 

(27) 

(28) 

At the center, the density diverges logarithmically and its derivative 
that is proportional to the space charge force diverges as the inverse 
of z. When a beam is injected with an energy spread much smaller 
than the RF bucket height, the distribution will look like the one in 
this case. 
Case 13.2 ): off momentum with zero enera snread 

The phase space density in this case is given as, 
1 1 

p(r)---‘= ’ (2% 
r lcos 01 477 

Hence in the case of Fig. 4 the real space density becomes, 

“‘i,=&cosh-l/,/s, { ;I:‘;;;;; (30) 

Fig. 4 A Longitudinal 
Distribution in the 
Phase Space 
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with its normalization as Eq. (28). This distribution has a double- 
humped structure as shown in Fig. 5. They have also a singularity 
with logarithmic divergence. When a beam is injected into a ring 
with a small energy spread and with a momentum mismatch that 
would happen probably for a rapid cycle machine, the distribution 
will look like the one in this case after it becomes steady. If the 
space charge effect is strong, however, it will change its shape and 
differ from the one given here. 

duuburton on a sv 
is :aken as in Fig. 6:fir which the normalized 

density in the real space is given by, 

g(z) = :[Zog 11 + 2fi(z/al- (z/a) logrMa)(] 

where, 
(0 < z aa) > 

(31) 

fl(Y) = 
l+.t’2-l?,+l+‘~ 

l-y2 - 1-y2 
(32) 

This distribution is shown in Fig. 7 as well as the ones 
corresponding to uniform distributions on disks in the phase space, 
their radii being a and fla, respectively. In this case, there is no 
singularity in the distribution. 
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in the Longitudinal Phase 
Space 

Fig. S Half of the Double-humped Fig. 7 Real Space Distribution for Square 
Structure of Longitudinal Distribution Phase Space Distribution 

662 

PAC 1989


