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GENERATING CATALOGS OF TRANSVERSE MATCHING SOLUTIONS*

G. Swain, P. Busch, and M. Bums,
Los Alamos National Laboratory MS-847, Los Alamos, NM 87545

Programs such as TRANSPORT or TRACE can find
transverse beam matching solutions one at a time when

given appropriate starting conditions. In the present
work, an algorithm is described which rapidly finds a
catalog of approximate transverse beam maitching

solutions. For a given initial beam, the algorithm finds the
gradients of four quadrupole magnets such as to get four
Twiss parameters (alpha and beta for horizontal and
vertical planes) which are close to a set of desired valucs at
the exit of a constant-energy beam line with no
horizontal-vertical cross coupling and no space charge.
The beam line may contain bending elements with edge
corrections and other eclements for which the r matrixes
are known. The algorithm transforms the entrance and
exit beam specifications to waist specifications, and uses
the properties of waist-to-waist transport to reduce the
problem from a four dimensional scarch to a two
dimensional search,

At the Los Alamos Meson Physics Facility
(LAMPF) accelerator, transverse matching is important in
the low-energy transport lines (0.75 MeV), where beams
from the H*, H-, and polarized H- sources must be tailored
for injection into the drift-tube linac; and in the transition
region (100 MeV), where the beam from the drifi-tube
linac is injected into the side-coupled linac. Space charge
has significant effects in the low-energy transport, but it
is still valuable to get no-space-charge matching solutions
as a starting point for solutions with space charge.

Meih f_Solution

The problem we wish to solve may be posed as
follows: We have a section of constant-energy bcam line,
as shown in Fig. 1. Four quadrupoles occupy the four
spaces between position 2 and 5, 6 and 9, 10 and 11, and 12
and 13. We know the r-matrixes relating the input and
output trajectories, such as (for the horizontal plane)

Xo rni1 ri12 Xi
= , (N

Xo' 21 122 j\xj
for all the remaining intervals, 1 to 2, 5 to 6, etc. Given the
Twiss parameters oix, Bix, @iy, Biy at position 1, what are

the sets of 4 quad values such that for cach set, the Twiss
parameters at position 14 are apx, Box. ®oy, Boy?

Qa Qb Qc Qd

|
Position: 1 2 5 6 9 10 11 12 13 14

Fig. 1. A section of beam line with four quadrupoles (Q).
(Positions 3, 4, 7, and 8 will be added later when we
consider thin lens equivalents for Q and Qp.)

Our first step is to replace the above problem by
an equivalent problem  involving  waist-to-waist transport
and replacing the first two quads by equivalent sets of thin
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fenses and drifts. By adding an appropriate drift at each
end of the section of beam line, we may start and end at a
waist (a=0). The length of drift we necd to add is

d=oa/y, (2)

which we need to find separately for both the horizontal
and the vertical planes, and where

y=(1+a2)/p. (3)
Equation (2) applies either at the start of the section of

beam line (where we use aj and B;), or at the end (where
we use ap and Bg). We then use the r matrix

1 d
Rz( J @
0 1

to represent the added drift from or to a waist. At the waist,

we then have a B of
Bwaist = Uy
We now find the thin lens equivalent of a

quadrupole. The eclements of the r-matrix for a quadrupole
are given in terms of a strength factor k and an effective

length L. The factor k is related to the field gradient G in
the quadrupole:

k="VIKI (5)
and G =By %K, (6)

where ¢ is the velocity of light, m and q arc the mass and
charge of particles in the beam, and B and yare relativistic
parameters for the beam velocity and energy (not Twiss
parameters). If the quadrupole has a field By at a radius a,
from the beam axis, G=By/ay. For the plane in which the
quad is focusing (K > 0),

cos(kL)
-k sin(kL)

k-1 sin(kL)
], 1)

cos(kL)

and for the plane in which the quad is defocusing (K < 0),

cosh(kL) k-l sinh(kL)
R= . (8)
k sinh(kL) cosh(kL)
The r-matrix for a drift-thin-lens-drift combination is
1 d 1 0 1 d
R=
0 t)l-r-1 1 0 1
1 -d/f 2d-d2/f
= , (9)
-1/f 1 - d/f

PAC 1989



where d is the length of each of the drifts, and f is the
focal length of the thin lens. We can make the drift-thin-
lens-drift equivalent to the quad if we set

ffl=uKL, (10)

and compare corresponding elements in Eqgs. (9) and (7) or

(9) and (8). For the focusing plane (K > 0), we find u and d
values of
uf = sm!kL!; (1)
kL
_ 1 - cos(kL)
and dr =L ¥ sin(kL) ’ (12)
and for the defocusing planc (K < 0), we find
sinh(kL)
= . (13)
kL
_ cosh(kL) - 1
44 =L YT Sinh(kL) (14)
The d's and u's are different for the focusing and

defocusing planes, and are functions of the quad strength

k. However, in either plane, the d's and u's arc slowly-
varying functions of k, and for small k,

d=1L172,
and u=1.

We can use a procedure in which the u's arc set to 1 and
the d's are set to L/2 initially; and after we determine
approximate values of the k's for the quads, we can find
more accurate values for the d's and u's. Then we go back
and find more accurate k's, ctc. In the cases we have tried,
this process converges in three iterations or less.

Our equivalent problem now has two sections of
beam line, one of which is shown in Fig. 2, onc for the
for the

horizontal plane and a slightly different one
vertical plane.  Positions 3 and 4, and positions 7 and 8§
represent  the cntrance and exits of the thin lenses,
respectively.
Dy Ta Toh Qe Qq Do
1 ] ] i ! —1 { l I
I 1 1 T T LI 1 T |
Position: 0 1 34 7.8 10 1112 13 14 15
e — A ~ J
R Matrix: N P Q
Fig. 2. Scction of beam line with thin lenses T, and Ty
equivalent 10 Q, and Qp at positions 3 and 7. Drifis Dj
and D, have been added in order that the beam

starts and ecnds with waists at positions 0 and 15.

The r matrix from position 0 to 3 is designated the
N matrix and its elements are found by combining the
matrixes for the initial drift Dj, the matrix for going from 1
to 2 in Fig. 1, and the matrix for the drift d (the initial drift
in the drift-thin-lens-drift representing quad Qa).
Similarly matrix P represents going from 4 to 7; and matrix
Q. from 8 to 15. Since we arc going to scarch over a 2-
dimensional grid of strengths for Q¢ and Qg, we assume for
the current grid point that the r matrixes for Q¢ and Qg arc

known, and thus we have cnough information to calculaic
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the matrix Q. For the horizontal plane, we then have an r

matrix
(nllx ni2x 1 0N/pPr1x Pi12x
R= .
nz1x n22x j\fa! 1/ p21x  DP22x
1 0y /arix qi12x
. , (15)
fp-! 1 q21x 922x
and for the vertical plane
nyp1y ni2y)/ 1 0N /P11y P12y
R= .
na1y n22y J\-fa-! 1 )\{p21y P22y
1 0Nrqi1y 4qi2y
. , (16)
-fpel 1 /{a21y  q22y

representing trajectories from the waist at position 0 to the
waist at position 15,

In order to solve for the strengths f,-! and f,-!
(and hence the strengths for Qa and Qp), we now take
advantage of the fact that an r-matrix for waist-to-waist
transport has a particular form.! That form is
J‘ (17)
5

Rz(

where s =+l or -1, v = vo/vi, and Yo and y; are output and
input Twiss beam parameters y = (1 + «2)/B . The quantity f
here relates to the focal length of the whole system from
waist to waist, not to any particular quad. Equations (15)

and (16) give us the r-matrix elements in terms of the quad

sv'lf'l(vf2 _.Yi~2)0.5 V'lf'lYi‘z

of-1 s f-1(vi2 - y;-2)0.

strengths of Qa., Qb, Qc. and Q4. Equating these to the

elements in (17), we then have six equations in the six

unknowns fx fy, Ka, Kb, K¢, and Kg:
rix = sxvx o vefs? - vix2)03 (18)
riazx = vx  fx lyix 2 (19)
r1x = fx! (20)
ri1y = syvy iy vy ly? -y )05 (21)
12y = vy Uy lyiy~? (22)
a1y = -fy7l. (23)

(Another pair of equations involving r22x and rp2y are not
independent of Eqgs. (18) to (23). since the determinant of
the r matrix is unity.) We may ecliminate the f's by using

Eqs. (20) and (23) to get the f's in terms of the rp1's. The
remaining equations beccome
rx + sevxTnix(varaie 2 -y 03 =00 (24)
riox + v lvix? r21x = 0 (25)
Ty + syvy lroiy(vyrany 2 -y 03 =0 (26)
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r2y + \"y-l'Yiy-2 r21y =0 27
When the matrixes in Egs. (15) and (16) are multiplied out,
we find Egs. (25) and (27) have the form

cabxKaKp + caxKa + cpxKp + ¢x =0 (28)

cabyKaKp + cayKa + chyKp + ¢y =0, 29)

where  capx=uaxLaubxLb(gxn11xP12x922x +
n12xP12x912x)

Cax=-Uaxla(gxN11xP22x922x + 8xN11xP12x921x +
n12xP22x412x + N12xP12xq11x)

cbx=-ubxLbl(gxN21xP12x + ExN11xP11x)q22x +
(n22xp12x + M12xP11x)912x]

cx=gx[(n21xP22x + N11xP21x)422x + M21xP12x +
n11xP11x)921x] + (M22xP22x+n12xP21x)q12x +
(n22xp12x + Ni2xP11x)411x

caby=uayLaubyLb(gyn11yp12yq22y +
n{2ypP12yd12y)

Cay=uayla(gyn11yp22yq22y + gyN11yP12yq21ly +
n12yP22yqi2y + H12yP12ydily)

Chy=ubylbl(gyn21yPi2y + gyN11yP11y)d22y +
(n22yp12y + N12yPliy)qi2y]

cy=gyl(n21yp22y + n11yp21y)q22y + (02(yp12y +
NyiyP11y)qQ21y]l + (n22yp22y+ni2yp21y)qizy +
(n22yP12y + m2yP11y)dlity

gx = vx lix2,

gy = Vy‘]Yiy'2 .

If we now solve the horizontal plane Eq. (28) for K and
substitute the result in the wvertical plane Eq. (29), we are
left with a quadratic equation for Kp:

b [y
2at 2a)

- Cabx Cby * Cbx Caby -
- Cax Cby - Cabx Cy *+ Cbx Cay + Cx Caby »
- Cax Cy + Cx Cay .

Ky =- , (30)

<
a

where a=
and c=
We can then find K, from Eq. (28) or (29). The quantities
K, and Ky may be positive or negative (focusing or
defocusing), but will not be complex for a valid solution for
our 4-quad problem.

Our method for finding possible solutions is then
as follows: For the current point on the grid of Q¢, Qd
gradients to be scarched, we know the values of K¢ and Kg
for Egs. (5) and (7)-(8). We use these and other known or
approximately known values to calculate the clements of
the N, P, and Q matrixes in Eqs. (15) and (16). Next we can
find the values of the c's in Eqs. (28)-(29) as shown above.
We now calculate two sets of values for Kz and Kp using the
quadratic discussed above. We find beuter valucs for the u's
and d's of Egs. (11)-(14), put these values in the N, P, and Q
matrixes, and iterate until our values of K, and Ky
converge. Wec find gradients corresponding to Ky and Kp
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from Eq. (6).

If the solution of the quadratic is complex, or the
values are larger than the limits of attainable quad
strengths, the sets of Kz and Ky are discarded as not being
solutions. Otherwise, the second condition for waist-to-
waist transport, is checked: we find if the quantity on the
left side of Eq. (24) is zero or has a nearby point with the
opposite sign, and similarly for Eq. (26). If this test is
passed for both, the set of quad strengths is recorded as
being on or near a solution.

Preliminary Implementation and Testing

Cne of us (P.B.) has written a computer code
called MATCH4Q which implements this procedure for
sections of the LAMPF beam line containing drifts, bends,
bend edges, quads, and general r-matrix elements. If the
Kyp from Eq. (30) is complex, the code tries a necarby real
value. For all sets of K values found by the code which are
within the limits specified by the wuser, the code finds
mismatch factors relating the computed Twiss parameters
oo and B to their target values, and can generate maps
showing the regions of low mismatch factor.

We have run a number of test cases using the
MATCH4Q code, and have always found at lecast the number
of solutions that we expected. Sometimes MATCH4Q listed
several scts of solution values which turned out to be
different approximations to the same cxact solution (as
determined with the TRACE code). We also tried running a
full 4-dimensional secarch for solutions in a few cases,
using a code written just for this purpose. No solutions
other than those which MATCH4Q had cataloged were
found.

MATCH4Q provides for searching a grid in K¢ - Ky
space of up to 112 by 112 points. The time it takes to find a
catalog of approximate solutions is about 3 minules on a
VAX 8700 computer for the full 112 by 112 search grid. If a
grid of 70 by 70 points is used, the search time is just over
one minute.

Conclusions

to be a wviable way of
matching solutions, which
We have just added the

This method appears
finding approximate transvcrse
can then be refined using TRACE.2
procedure to the TRACE package used by the LAMPF
accelerator operators.  First indications are that use of the
procedure will result in significant time savings when the
operators arc determining the best way to match the beam
into one of the linacs.
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