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Programs such as TRANSPORT or TRACE can find 
transverse beam matching solutions one at a time when 
given appropriate starting conditions. In the present 
work, an algorithm is described which rapidly finds a 
catalog of approximate transverse beam matching 
solutions. For a given initial beam, the algorithm finds the 
gradients of four quadrupole magnets such as to get four 
Twiss parameters (alpha and beta for horizontal and 
vertical planes) which are close to a set of desired values at 
the exit of a constant-energy beam line with no 
horizontal-vertical cross coupling and no space charge. 
The beam line may contain bending elements with edge 
corrections and other elements for which the r matrixes 
are known, The algorithm transforms the entrance and 
exit beam specifications to waist specifications, and uses 
the properties of waist-to-waist transport to reduce the 
problem from a four dimensional search to a two 
dimensional search. 

At the Los Alamos Meson Physics Facility 
(LAMPF) accelerator, transverse matching is important in 
the low-energy transport lines (0.75 MeV), where beams 
from the H+. He, and polarized H- sources must be tailored 
for injection into the drift-tube linac; and in the transition 
region (100 MeV), where the beam from the drift-tube 
linac is injected into the side-coupled linac. Space charge 
has significant effects in the low-energy transport, but it 
is still valuable to get no-space-charge matching solutions 
as a starting point for solutions with space charge. 

Method of Solution 

The problem we wish to solve may be posed as 
follows: We have a section of constant-energy beam line, 
as shown in Fig. 1. Four quadrupoles occupy the four 
spaces between position 2 and 5, 6 and 9, 10 and 11, and 12 
and 13. We know the r-matrixes relating the input and 
output trajectories, such as (for the horizontal plane) 

(:: j= (:i: :::)(?y 
(1) 

for all the remaining intervals, 1 to 2, 5 to 6, etc. Given the 
Twiss parameters oix, flix, oiy, piy at position 1, what are 
the sets of 4 quad values such that for each set, the Twiss 
parameters at position 14 are a,,, pox, soy, pay? 

Qa Qb Qc Qd 
I I 

I I 
I 1 I I I I I I 

Position: 1 2 5 6 9 10 11 12 13 14 

Fig. 1. A section of beam line with four quadrupolcs (Q). 
(Positions 3. 4, 7, and 8 will be added later when we 
consider thin lens equivalents for Qa and Qb.) 

Our first step is to replace the above problem by 
an equivalent problem involving waist-to-waist transport 
and replacing the first two quads by equivalent sets of thin 
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lenses and drifts. By adding an appropriate drift at each 
end of the section of beam line, we may start and end at a 
waist (a=o). The length of drift we need IO add is 

d = air , (2) 

which WC need to find separnicly for both the hori/.ontal 
and the vertical plants, and where 

y = (1 + a2)/j3 (3) 

Equation (2) applies either at the start of the section of 
beam line (where we use ai and pi), or at the end (where 
we use a0 and PO). We then use the r matrix 

(4) 

to represent the added drift from or to a waist. At the waist, 
we then have a 8 of 

Pwaist = I/Y . 

We now find the thin lens equivalent of a 
quadrupole. The elcmcnts of the r-matrix for a quadrupole 
are given in terms of a strength factor k and an effective 
length L. The factor k is related to the field gradient G in 
the quadrupole: 

k=ITiITT (5) 

and G = PY YK, 

where c is the velocity of light, m and q arc lhe mass and 
charge of particles in the beam, and 8 and Y are relativistic 
parameters for the beam velocity and energy (not Twiss 
parameters). If the quadrupole has a field B, at a radius a,, 
from the beam axis, G=B,/a,. For the plane in which the 
quad is focusing (K > O), 

cos(kL) k-l sin(kL) 
R= (7) 

-k sin(kL) cos(kL) 

and for the plane in which the quad is defocusing (K < O), 

cosh(kL) k-1 sinh(kL) 
R= (8) 

k sinh(kL) cosh(kL) 

The r-matrix for a drift-thin-lens-drift combination is 

R=(i: I’)(ll p1!1: :‘) 
1 - d/t” 2d - d2/f 

= 
’ -I/f 1 - d/f 

(9) 
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where d is the length of each of the drifts, and f is the 
focal length of the thin lens. We can make the drift-thin- 
lens-drift equivalent to the quad if we set 

f-t =uK L, (10) 

and compare corresponding elements in Eqs. (9) and (7) or 
(9) and (8). For the focusing plane (K > 0), we find u and d 
values of 

uf= a!gL; 

and df = L 
I - cos(kLl 

kL sin(kL) ’ 

and for the defocusing plane (K < 0), WC find 

ud= L!L%p 

dd = L 
cosh(kL) - 1 

kL sinh(kL) 

(11) 

(12) 

(14) 

The d’s and u’s are different for the focusing and 
defocusing planes, and are functions of the quad strength 
k. However, in either plane, the d’s and u’s arc slowly- 
varying functions of k, and for small k, 

d = L/2 , 

and u= 1. 

We can use a procedure in which the u’s are set to 1 and 
the d’s are set to L/2 initially; and after we determine 
approximate values of the k’s for the quads, we can find 
more accurate values for the d’s and u’s, Then we go back 
and find more accurate k’s, etc. In the cases we have tried, 
this process converges in three iterations or less. 

Our equivalent problem now has two sections of 
beam lint, one of which is shown in Fig. 2, one for the 
hori/.ontal plane and a slightly different one for the 
vertical plane. Positions 3 and 4, and positions 7 and 8 
rcprcscnt the entrance and exits of the thin lcnscs. 
rcspectivcly. 

Q Ta Tb Qc Qd Do 
I I I 1 I I I 1 I 

Position: 0 1 3.4 7,8 IO 11 12 13 14 IS 

Y T 

R Matrix: N P 6 

Fig, 2. Section of beam line with thin lenses T, and Tb 
equivalent to Qa and Qb at positions 3 and 7. Drifts Di 
and D, have been added in order that the beam 
starts and ends with waists at positions 0 and 15. 

The r matrix from position 0 to 3 is designated the 
N matrix and its elements are found by combining the 
matrixes for the initial drift Dt, the matrix for going from 1 
to 2 in Fig. 1, and the matrix for the drift d (the initial drift 
in the drift-thin-lens-drift representing quad Qa). 
Similarly matrix P represents going from 4 to 7; and matrix 
Q, from 8 to 1.5 Since we arc going to search over a 2- 
dimensional grid of strengths for Qc and Qd, we assume for 
the current grid point that the r matrixes for Qc and Qd arc 
known, and thus we have enough information lo calcuiatc 

the matrix Q. For the horizontal plane, we then have an r 
matrix 

R=( ::I: ::::)( f:-l 1) (::I: I:::], 

(fit :) (I::: ::::]’ 

and for the vertical plane 

nl 
R= 

n2 

1 

-fb 

(15) 

; :) [;;;; -)> (16) 

representing trajectories from the waist at position 0 to the 
waist at position 15. 

in order to solve for the strengths f,-t and fb- t 
(and hence the strengths for Qa and Qb), we now take 
advantage of the fact that an r-matrix for waist-to-waist 
transport has a particular form.1 That form is 

r 

s v-lf-l(vf2 _ ri-2)0.5 “-lf-lYi-2 

R= 

1 ’ 
(17) 

-f- 1 s f-l(,f2 yi-2)0.5 

where s = +I or -1, v = ye/yi, and y. and yr are output and 
input Twiss beam parameters y = (1 + a2)/P The quantity f 
here relates to the focal length of the whole system from 
waist to waist, not to any particular quad. Equations (15) 
and (16) give us the r-matrix elements in terms of the quad 
strengths of Qa. Qb, Qc. and Qd. Equating these to the 
elements in (17). we then have six equations in the six 
unknowns f,, fy, Ka, Kb, Kc, and Kd: 

rttx = ~xv,-~f~-t(v~fx~ - yix-2)o.5 (18) 

r12x = vx -lfx-lyix-2 (19) 

r21k = -fx-l (20) 

rely = syvy-‘fy -’ (vyfy2 yiy-2)o’5 

rt2y = Vym1fym1yiye2 

r2ty = -fy** . 

(21) 

f.22) 

(23) 

(Another pair of equations involving r2zx and r22y are not 
independent of Eqs. (18) to (23). since the determinant of 
the r matrix is unity.) We may eliminate the fs by using 
Eqs. (20) and (23) to get the fs in terms of the r2t ‘s. The 
remaining equations become 

rftx + sxvx-1r2tx(vxr2tx-2 - yix-2)o’5 = 0 (24) 

) ri2x + Vx-‘Yix -2 r21x = 0 (25 

rily + syvv -1 r:, ty(vyr2f Y-2 - yiy-2)o.5 = 0 (26 ‘) 

599 
PAC 1989



r12y + Vy-‘yiy-’ r2ly = 0 (27) 

When the matrixes in Eqs. (IS) and (16) are multiplied out, 
we find Eqs. (25) and (27) have the form 

cabxKaKb + c,,Ka + CbxKb + C, = 0 (281 

cabyK&b + cayK, + CbyKb + Cy = 0 , (29) 

where cabx=uaxLaubxLb(gxnl lxP12x422x + 
n12xP12x912x) 

cax=-uaxLa(gxniixP22x422x + 6x*11xp12xq21x + 
n12xP22xq12x + n12xP12xq1 td 

cbx=-ubxLbl(g,nZlxP12x + gxnllxPllxh22x + 
(n22xP12x + n~2xP~~xh~2x1 

cx=gx[(n2ixP22x + “1 1xp21xh22x + (n21xp12x + 
nllxpi 1d92ix1 + (n22xP22x+n12xP21x)412x + 
(n22xP12x + n12xPllxhllx 

cabyzuayLaubyLb(gynllyP12yq22y + 
n12yP12y912y) 

cay=uayLa(gynllyP22yq22y + gynllyp12yq21y + 
ni2yP22yqi2y + n12yP12y91iy) 

cby=ubyLb[(gyn2lyPl2y + 6y”llyPllyhl22y + 
(n22yP12y + n12yp~kyh12yl 

cy=gyl(n21yP22y + nilyP21y)422y + (n21yP12y + 
nllyPllyh21yl + (n22yP22y+n12yP21y)q12y + 
(n22yP12y + n12yPlly)911y 

sx = vx-‘Yix -2 , gy = Vy“Yiy -2 

If we now solve the horizontal plane Eq. (28) for Ka and 
substitute the result in the vertical plane Eq. (29), we arc 
left with a quadratic equation for Kb: 

b 
Kb =- c;’ 

where a = Cabx Cby + Cbx C,'q , 
b = - Cax Cby - C&x Cy + Cbx Cay + Cx caby , 

and c = - tax cy -4 cx cay 

We can then find Ka from Eq. (28) or (29). The quantities 
K a and Kb may be positive or negative (focusing or 
defocusing), but will not bc complex for a valid solution for 
our 4-quad problem. 

Our method for finding possible solutions is then 
as follows: For the current point on the grid of Qc, Qd 
gradients to bc scarchcd, we know the values of Kc and Kd 
for Eqs. (5) and (7)-(g). WC use these and other known or 
approximately known values to calcularc the elements of 
the N, P, and Q matrixes in Eqs. (15) and (16). Next we can 
find the values of the c’s in Eqs. (28)-(29) as shown above. 
WC now calculate two sets of values for Ka and Kb using the 
quadratic discussed above. We find better values for the u’s 
and d’s of Eqs. (11)-(14), put these values in the N, P, and Q 
matrixes, and iterate until our values of K, and Kb 
converge. WC find gradients corresponding to Ka and Kb 

from Eq. (6). 

If the solution of the quadratic is complex, or the 
values are larger than the limits of attainable quad 
strengths, the sets of Ka and Kb are discarded as not being 
solutions. Otherwise, the second condition for waist-to- 
waist transport, is checked: we find if the quantity on the 
left side of Eq. (24) is zero or has a nearby point with the 
opposite sign, and similarly for Eq. (26). If this test is 
passed for both, the set of quad strengths is recorded as 
being on or near a solution. 

Preliminarv Imolementation and Testing 

One of us (P.B.) has written a computer code 
called MATCH4Q which implements this procedure for 
sections of the LAMPF beam line containing drifts, bends, 
bend edges, quads, and general r-matrix elements. If the 
Kb from Eq. (30) is complex, the code tries a nearby real 
value. For all sets of K values found by the code which are 
within the limits specified by the user, the code finds 
mismatch factors relating the computed Twiss parameters 
c( and 0 to their target values, and can generate maps 
showing the regions of low mismatch factor. 

We have run a number of test cases using the 
MATCH4Q code, and have always found at least the number 
of solutions that we expected. Sometimes MATCH4Q listed 
several sets of solution values which turned out to be 
different approximations to the same exact solution 
determined with the TRACE code). We also tried runnin$ai 
full 4-dimensional starch for solutions in a few cases, 
using a code written just for this purpose. No solutions 
other than those which MATCH4Q had cataloged were 
found. 

MATCH4Q provides for searching a grid in Kc - Kd 
space of up to 112 by 112 points. The time it takes to find a 
catalog of approximate solutions is about 3 minutes on a 
VAX 8700 computer for the full 112 by 112 search grid. If a 
grid of 70 by 70 points is used, the search time is just over 

one minute. 

Conclusions 

This method appears to bc a viable way of 
finding approximate transverse matching solulions, which 
can then be refined using TRACE.2 WC have just added the 
procedure to the TRACE package used by the LAMPF 
accelerator operators. First indications arc that use of the 
procedure will result in significant time savings when the 
operators are determining the best way to match the beam 
into one of the linacs. 
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