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Abstract 

The dumping of up to 5.1014 protons at 8 TeV/c 
on to most solid materials is likely to cause the 
material to melt and evaporate. This can be avoided by 
diluting the beam through deflection over a large area 
of the dump. In this paper, analytical formulae are 
derived to calculate the effect of beam dilution in 
order to help define the deflection system. As basis 
we have taken the FLUKA results for the energy 
deposition in graphite of an infinitely thin beam. A 
formula is then derived that fits these results and 
which can be analytically integrated to obtain 
formulae for the energy deposition of Gaussian beams 
as well as for different ways of diluting the beam, 
e.g. by deflecting it over straight lines or circles. 
These formulae allow a quick and accurate evaluation 
as compared to Monte Carlo calculations which are very 
time consuming and which have a limited precision 
because of the statistics involved. 

Introduction 

For dumping the 8 TeV/c proton beams of the LHC 
each of the two beams will first be extracted, and 
then blown up along a several hundred m long transport 
channel to dilute the proton density to a level 
acceptable for the dump material. One way of diluting 
the beam is to let the beam pass strong quadrupoles, 
another much more efficient one which can reduce the 
length of the transport channel considerably 1s to 
sweep the beam by fast pulsed dipoles either linearly 
or in the form of circles or spirals. In the 
following, formulae are derived which allow to 
calculate easily the energy deposition densities in 
the dump material to be expected for the different 
ways of beam dilution. 

The infinitely thin beam 

The distribution of energy density E deposited by the 
dumping of an infinitely thin beam (a = 0) into 
graphite has been calculated with the FLUkA programmo 
[l]. The FLUKA results cover beam momenta ranging from 
500 ~eV/c to 20 TeV/c. At each momentum, a global 
calculation was made for a graphite cylinder of 10 cm 
radius and 700 cm length and a refined calculation 
where the graphite radius was reduced to 1 cm. A close 
look at the distributions showed that they can be 
fitted by a simple quadratic function of radius r 
which allows for easy analytical integrations later on 
to obtain the results for the different types of beam 
dilutions : 

E 
E = 

0 
(GeV/cm3 proton) (1) 

i + (r/A)' 

where B, (GeV/cmJ proton) is the energy deposition den- 
sity along the beam axis as a function of the penetra- 
tion depth d (cm) and the beam momentum p (GeV/c): 
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and where A (cm) defines the radial distribution which 
is also a function of the penetration depth d and the 
beam momentum p : 
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Fig. 1. Energy deposition density of an infinitely thin 
beam as a function of the radius r for diffe- 
rent beam momenta p and at different depths d. 
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Figure 1 shows for 3 momenta the FLUKA results and 
the fit (1). The fit is poorest at small penetration 
depth d where the cascade is not yet well developed. 
Here, the infinitely thin beam causes infinitely high 
energy densities E, on the beam axis. A beam of 
finite width does not show such a singularity. The fit 
(1) keeps the energy density on the beam axis finite; 
the error introduced disappears as soon as the beam is 
blown up slightly and the peak energy density shifts 
deeper into the graphite. When blown up very much, the 
peak energy density is found at the depth where the 
laterally integrated energy is highest (d between 200 
and 300 cm). 

A linearly swept infinitely think% ---- 

Sweeping such a beam over a straight line dilutes 
the energy deposition density. Assuming a constant 
linear velocity and taking a horizontal line which 
coincides with the x-axis, ranging from -a/2 to 
k/2, the distribution as a function of x and y can 
be found by integrating equation (1) over this line 
which yields : 

The highest density is found at x : 0 and y = 0. 
This is shown in Fig. 2. 
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Fig. 2. The peak energy density as a function of Lhe 
line length k resp. the radius R ; infinitely 
thin beam of p = 8 TeV/c at different depths d. 

For !i a A, Emax becomes : 

*A E =E-k- (2a) 
max 0 

A circularly-s_wgLjnfinitely _thit.b_e;lln 

Such .a twam can h+h obtained with two orthogonal 

dipole magnets, excited with sinusoidal current pulses 
with 90” phase difference. Taking a circle of radius R 
and a constant angular velocity from 0 to 2n, the 
energy density distribution as a function of radius r 
can be found by integrating equation (1) over this 
circle which yields : 

Ii! = J’---‘o-A2 (3) 

(A + R2 + r1)2 - (2 Rr)> 

Maxima are found at r = 0 and r = R. The latter case 
is shown also in Fig. 2. For large A this becomes : 

E = 16 A 
max o 2R (3a) 

which is identical to (2a) for large I. 

A spirallyzERt infinitely thin beam - ---- 

A spiral can be simulated by the superposition of N 
rings of different radii, each containing l/N of the 
beam particles. Fig. 3 shows the energy deposition 
density as a function of the radius r for N = 3 with 
radii R of 6, 7 and 8 cm respectively. 
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Fig. 3. The energy dfllslty a:; a function of t ho radius 
r for 3 circles at resp. R z 6, 7 and 8 cm ; 
infinitely thin beam of p 2 8 TeV/c, depth d = 
300 cm. 

A very fine spiral can be modelled as the super- 
position of dn infinite number of circles between the 
radii R, and R, where each radius is hit by an 
equal amount of beam particles. This case is obtained 
by integration of equation (3) over R. Assuming that 
(R> + 1-2) >> A’, we obtain : 

- F (r, RI, Ra, A) 

whcrrb : 

(4) 
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‘&‘-293 + A’+ /-‘------ 
----- 

R+r (A +4r')((R -r)'+ A') 
F; en -z-- . ---_'-------p 1 
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Equation (4) for R, = 6 and R, 2 8 cm is 
also shown in Fig. 3. 

The Gaussian beam 

The real beam can be considered to be a Gaussian 
particle distribution with standard deviation d. The 
energy deposition from a Gaussian distributed beam is 
found by integrating equation (3) for radii p 
ranging from 0 to m : 

- p2/2 a2 
E = E. j- e---- . __ 

0 2 9l 2 
/,----f-~~~zP~ (5) 

- (2pr)' 

This integral can be solved by means of numerical 
integration. However, we will make an approximation 
which makes analytical integration possible and which 
gives useful results : 

1 __I ___ 
A' + pz + r' 

This approximation limits the validity of the 
results. For small beam sizes where d 6 A/2, the 
error introduced is not more than 15% (30% for o i 
A) and the results can be used with confidence. For 
large beams where a M A the results are only valid 
around the centre (0 < r <'A). We obtain : 

E A' 
E=L.e 

(A'+ r1)/2 oa E A'+ r' 
. 

2 u2 
1(-- 1 

2 CT2 
(6) 

where E, is Eulers integral. This equation can for 
convenience be approximated to within about 2% preci- 
sion by the following equations : 

for o 5 J---'--- 2 (A + r=) : 
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A'+ r2 A'+ r'+ 1.82 o2 
(6a) 

J 
---~-- 

for o 2 2 (A'+ r3) : 

E A3 
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E = 2-- . e (A2+r2)/2 6' A2+ra 
- !W(1.781 ---) (6b) 

2 aa 2 a= 1 
Fig. 4 shows (6a) and (6b) for r = 0 as a function 

of the standard deviation 6. This peak value can be 
written for large o (o >> 2 A) as : 

E max (6~) 

Linearly, circularly and spirally swept Gaussian beam 

The energy distribution for these cases are obtai- 
ned by integrating equation (6) over respectively, 
e. r and R. The following 3 expressions indicate how 
E resp. Em, reduce for small o (< A) in compari- 
son to the infinitely thin beam as given in (2a), (3a) 
and (4) : 
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Fig. 4. Peak energy density of a Gaussian beam as a 
function of 0 ; beam of p = 8 TeV/c at 
different depths d. 

Linear sweep : 

E =E 0.154 s A 0.846 w A3 
max 

+ ~__-- 
0 a 

a F------- A + 1.82 o2 1 (7) 

Circular sweep : same as 
2 n R. 

Spiral sweep (N = CD) : 

( 7) with P replaced by 

- 16 rz 

A=+ 1.82 0' 

where R, +AQr<R, -A. 

CR - r)(R - r) 
, -...L---L.- 

(Rx+ r)(R,+ r) 1 
Conclusion 

The fit (1) of the FLUKA results of the radial 
energy distribution yields integrable functions when 
realistic beam distributions are considered. The 
efficiency of the different ways of diluting the beam, 
e.g. by blowing it up with quadrupoles, or by 
deflecting it over lines or circles, can be studied 
with reasonably good precision bearing in mind that 
Monte Carlo calculations in which the beam 
distributions are simulated directly are time 
consuming and have a limited precision because of the 
statistics involved. 
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