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Abstract

The optimum copper-to-NbTi (Cu/Nb) ratio in a superconduc-
ting cable inside a dipole is estimated by computing the mini-
mumn point-deposition energy required to quench the cable. The
copper in the narrow gaps between the closely packed NbT1 fil-
aments may not conduct well heat and electricity’ and has been
taken care of. We also try to use the quench current density in-
stead of the critical current density which is defined arbitrarily.?
The numerical solutions of the time-dependent equation is ap-
proximated by analytic solutions of the time-independent equa-
tion with the introduction of the concept of minimum propagat-
ing zone {MPZ).® For the SSC cable, the 3-dimension analysis
produces an optimum Cu/Nb ratio of ~ 1.71, which agrees with
the experimental measurements done at Brookhaven (BNL).*

1. Introduction

Inside a dipole magnet, there is only limited space available
for the superconducting cable. More NbTi inside the cable im-
plies higher critical current and therefore less likely to turn nor-
mal in the event of a heat deposition. However, this also implies
less copper to conduct the heat and any excess current when
part of the cable becomes normal. On the other hand, more
copper and less NbTi will lead to a lower critical current. As a
result. optimizing the ratio Cu/Nb ratio is an important issue
in designing a magnet. This is done by computing the minimum
energy deposition required to quench the cable.

2. One-dimension Analysis

The superconducting cable is made up of strands. We assume
that a strand is narrow enough (diameter ~ 0.808 cm) so that
uniform thermal distribution can be established easily across the
eross section. The temperature profile 8(z) along the strand can
he determined by the one-dimension heat-flow equation
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where A and P are the cross sectional area and perimetric cir-
cumference of the strand, and A, and A,. are the fractions of
copper and NbTi respectively. The effective volume specific heat
of the copper-NbTi complex is

3
Can(8) = [MoCie + AuC] (f—> : (22)

o,
where, at 8, = 4.2 K, the volume specific heats of Cu and NbTi
are respectively C., = 1.6 x10? j/m3[{ and C,. = 6.8x10° j/mSK.
Below ~ 10 K, the electric resistivity of copper in a magnetic
flux density B (in teslas) is®
*Operated by the Universities Research Association, Inc.. under
contracts with the U.S. Department of Energy.
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peu(6,B) = (0400323 + —1—) x 1.7%x 107 Qm , (2.3)

RRR
where the residual resistivity ratio (RRR) of copper is taken as
100. The thermal conductivity of copper is assumed to have a
fixed value of 350 wm/K except in numerical computations. We
believe that a conductivity that varies with temperature will not
affect the optimum computed Cu/Nb ratio. When the strand
becomes partly normal, the power generation per unit volume
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where j,p is the operating current density in the NbTi filaments,
6, is the temperature when NbTi becomes partly normal, and
8. is the critical temperature when NbTi becomes completely
normal. The rate at which heat is transferred per unit area at
the strand’s surface to the exterior bath of temperature 6, is

H(6) = h(6 — 6,) . (2.5)

where h is called the heat transfer coeflicient and is assumed to
be time and temperature independent. For cooling by nucleate
pool boiling of He, A ~ 5x 10" wm™2K~'. Inside a dipole magnet
or in the experimental measurements at BNL* where the He is
almost stagnant, h ~ 2000 win—* K.

We have studied the time evolution of a concentrated dis-
turbance. If the initial energy of the disturbance is small, the
disturbance temperature profile spreads out, approaches a criti-
cal temperature profile slowly, and subsides eventually as shown
in Fig. 1(a). If the energy in the disturbance is big enough, the
disturbance also spreads out until it reaches a critical profile.
After that, however, the temperature rises everywhere resulting
in a quench as shown in Fig 1(b).
study propagating solutions instead. The propagating solution
which contains the least energy is called the MPZ.? So far the
computation is entirely numerical and extremely tedious. The

These results inspire us to

propagating zones are therefore approximated by analytic solu-
tions of the time-independent heat-flow equation, which satisfy
all boundary conditions except for the continuity of the temper-
ature gradient at the ends of the zones.® This approximation is
justified because we expect that the concentrated heat deposi-
tion, as it spreads out, will try to adjust itself so as to satisfy the
time-independent equation as much as possible starting from the
center of the deposit. We find that the energy in the approxi-
mate MPZ gives the correct order-of-magnitude estimate to the
minimum energy required to cause a quench by solving the time-
dependent equation.

The energy required to set up a MPZ for the SSC sample
C358A at bath temperature 4.35 K is shown in Fig. 2 as a func-
tion of Cu/Nb ratio.” Here, no surface cooling has been assumed.
For the SSC dipoles, we are interested in the operating current of
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Fig. 1. Time evolution of a gaussian point disturbance, which ap-
proaches first a critical temperature profile, and then (a) subsides or
(b) diverges depending on the size of the disturbance.

6.5 kA. The optimized Cu/Nb ratio is therefore 0.54 . We vary
RRR, the thermal conductivity, and bath temperature. The
energy-content curve of the MPZ does change, but the maxi-
mum remains at C1t/Nb ratio of 0.54 . When surface cooling is
introduced. the maximum does shift to larger Cu/Nb ratio as
depicted in Fig. 3. However, for a meaningful effective surface
heat transfer coefficient h ~ 2000 wm~2K !, the shift is min-
imal. In fact. the energy content curve is not altered by very
much.

3. Effective Cu/Nb Ratio

Experimental measurements made at BNL* shows that at
6.5 kA, the most stable SSC cable should have Cu/Nb ratio as
large as 1.6 or 1.7, which definitely does not agree with our re-
sult. However, if we examine the cross section of the C358A
strand, we find that the NbTi filaments are not distributed uni-
formly everywhere. Instead, we find a copper core of radius
~ 0.085 mm. then an annular band extending out to radius
~0.325 mm containing a matrix of NbTi and copper, and finally
a copper jacket up to a radius of 0.404 mm. Inside the annu-
lar band, the superconductor filaments are very closely packed
hexagonally. The filaments have a diameter of d ~5 pm but the
spacing between filaments is only s ~ 0.5 um. The mean-free-
path of electrons at cryogenic temperatures is much bigger than
0.5 pm, so that the copper in between the filaments may not
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Fig. 2. Energy contents of the one-dimensional MPZ for various oper-
ating currents.

20 T ] T T ] —T T L E s
r Current 6.6 kA "‘
F Bath Temp 4.35 K b
- Heat Transfer J
- Coeff h in wm ™K  _
3 15— —
g I 7
N h=10000 h=20000 ]
o b =
- b
5 1ol
o 10 h=2000 —
-
5 3 p
L
3 L J
g i h=0
3 i
- B 4
2 5 —
1 L J
= L |
I U RN B
0 0.5 1 1.8 2

Copper—to—NbTi Ratic

Fig. 3. Energy content of MPZ with surface cooling.

contribute to thermal conductivity and electrical conductivity.!
Therefore, what we have been computing is something related
to effective Cu/Nb ratio reg, when only the copper in the inte-
rior core and the exterior jacket are counted. The actual Cu/Nb
ratio r is given by

(3.1)

T=Te + 7y,

where the local Cu/Nb ratio ry in the annular matrix is given by
2v/3 2
_ 23 (1 + ) 1.

T

It is surprising to find Eq. (3.1) independent of the size of the
inner copper core and the diameter of the strand. What we need
to do now is to replace the fraction of copper A, in Egs. (2.1)
and (2.4) only by the effective one, i.e.. Ay, — reg /(1 + reg). For
our sample, r, = 0.334. Repeating the computation, we get the
new optimum Cu/Nb ratio r = 0.84 as shown in Fig. 4. This
result, however, is still far from the experimental observation.

8

d

Te

(3.2)

4. Three-dimension Analysis

The BNL measurements were done with two cables one over
the other instead of a single strand.* It may not be possible
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Vig. 4. Energy content of one-dimensional MPZ using J. or J, with
interfilament copper neglected.

for the cross section of the cable complex to come to thermal
equilibrium. As a result, we need to compute the energy inside
a 3-dimensional MPZ. We proceed exactly as before using the
3-dimensional time-independent heat-flow equation and obtain
solutions that satisfy the equation everywhere except for a dis-
continuity of the temperature gradient at the edge of the MPZ.
We assume a unique transverse thermal conductivity &, in all
directions, thus reducing the problem to a 2-dimensional one.?
We expect k; to be ~ 5% of the longitudinal conductivity ky.
As is shown in Fig. 5, however, the ratio k) /k) is very insensi-
tive to the optimum Cu/Nb ratio r ~ 1.25 of the 3-dimensional
MPZ. Here the interfilament copper has been neglected.

5. Uncertainty of Critical Current Density

The critical current density J. as a function of temperature
and field strength used in the above computations had been
taken from the measurements by Morgan® on the cable C3584A
which contains 23 strands with a Cnu/Nb ratio ~ 1.3 . This J. 1s
not a transition temperature, since the the critical current I, is
defined arbitrarily as the cable current when the cable resistivity
reaches 1 x 1071 ©-m. However, it is believed that J. defined
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Fig. 5. Plot of ratio of quench current I to critical current f. versus
Cu/Nb ratio.

this way will have roughly the same value for cables with dif-
ferent Cu/Nb ratios. Becs ¥
will quench or not, it may be more reasonable to use instead
the quench current I, which is larger than I.. The experimental

measurement?® of I,/I, as a function of Cu/Nb ratio is shown

srniice we oare shatit whether o
Because we care about whether a ca

in Fig. 5, from which we obtain approximately (dashed line) for
the quench current density

s \

Jo~ Tl + alr—-1)] . (5.1)
which holds at least for r from 1.0 to 1.8, with a ~ 0.2 . The

new result shown as dashes in Fig. 6 depicts an optimum Cu/Nb
ratio r ~ 1.71, which agrees rather well with experimental mea-
surements in view of the roughness of the computation. If we
apply Eq. (5.1) to the one-dimension analysis, the result shown
as dashes in Fig. 4 gives an optimum r ~ 0.10 only, still very far
from the experimental observations.
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Fig. 6. Energy content of three-dimensional MPZ using J. or J, with
interfilament copper neglected.
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