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Abstract: Compact electron storage rings with strongly 
curved superconducting dipole magnets have been studied as a PO- 

tential soft X-ray source for the production of ULSIs. This paper 
describes a numerical method based on linear programming and 2- 
dimensional field calculations by the finite element method to de- 
termine the coil configuration in such a dipole magnet. Usefulness 
of this method is demonstrated when designing a magnet having 
the smallest possible magnetomotive force and a good field region 
of a required size for given design parameters such as maximum 
dipole field strength or bending radius. 

Introduction 

Synchrotron radiation (SR) has been studied as a prospec- 
tive soft X-ray source for micro-lithography. During the last sever- 
al years, designs and constructions of the compact electron storage 
ring dedicated to this purpose, based on either the weak-focusing 
or strong-focusing (separated function) principles, have been re- 
ported [1,2,3]. The weak focusing ring consists of a single-body 
superconducting magnet, and the strong focusing ring consists of 
90 or 180 degree sectoral superconducting dipole magnets connect- 
ed by straight sections. 

One of the advantages in the strong-focusing compact ring 
is that the conventional components for circular accelerators such 
as RF cavity, focusing magnets and vacuum pumps can readily be 
applied. Ilowever, it is not easy to fabricate the sectoral supercon- 
ducting dipole magnet mainly because its bending radius is so 
small compared to the magnet length that a gap between the upper 
and lower portion of the outer coil is needed throughout the mag- 
net in order to locate beam lines for SR. This requirement on coil 
configuration also makes it difficult to obtain a uniform dipole 
field in the magnet. 

This paper reports a numerical procedure for determining 
the coil configuration in the vertical cross sectional plane of the 
magnet to achieve a uniform dipole field with a good field region 
of a required size and field uniformity. The basic idea of this opti- 
mal design technique on magnetostatic devices was originally pro- 
posed by Ishiyama et al.[4,5,6] and has been applied to designing 
a superconducting coil system for Magnetic Resonance Imaging 
(MRI). Their technique is based on a combination of mathematical 
programming methods and formulation of 2-dimensional magnetic 
fields by the finite element method (FEM) or boundary element 
method (REM). In our case, the linear programing (LP) and FEM 
formulation have been used. Analytic expressions of the magnetic 
flux density for air core geometry have also been used as a tool 
for a preliminary survey of geometrical parameters. 

Ontimization Method 

A cross-sectional geometry of the calculation model is 
shown schematically in Fig. 1. We assume that the magnet is ax- 
ially symmetric with respect to the z-axis. By reason of the mid- 
plane symmetry of the magnet, only the upper haIf of the magnet 
is considered. The coil region is divided into a set of sectoral coil 
elements and has a gap of given length outside the electron orbit. 
Current densities in the coil elements will be taken as unknown 
variables. Regulated points located appropriately in a region cen- 
tered at the electron beam position are for restricting magnetic 
fields. The iron shield has a circular inner surface. We assume 
that the iron shield has a constant permeability. 

In order to optimize the current density distribution in the 
coil region with the help of LP, we need to express r and z com- 

ponents of the magnetic flux densities Br, Bz at each regulated 
point, as a linear combination of the current density j. As long as 
the second assumption is satisfied, in matrix form this is written 
as: 

i 1 ;; = [q 3, 
LP 

p=1,2, ,m 

where 

Mp=[;;:~::::: ::.I, 

and 

j=( j, j, . . . j, i 

(2) 

Here n and m are the total numbers of coil elements and regulated 
points respectively, (;p is a matrix of the order of 2xn and its ma- 
trix elements gli and g,i are equivalent to r and z components of 
the magnetic flux dens;ty produced by a current of IA/m2 in the 
ith coil element, respectively. 

Calculations of the matrix elements of Gp have been per- 
formed using the FEM formulation. If the permeability in the iron 
shield can be regarded as a infinite number, the Neumann bounda- 
ry condition may be assigned on the inner surface of the iron 
shield, which means that the magnetic field lines are perpendicular 
to the boundary tine. In detail, the normal derivative of the prod- 
uct of the r coordinate times the azimuthal component of the mag- 
netic vector potential may be set to zero on the boundary. This ap- 
proximation eliminates calculating magnetic fields in the iron 
shield. 

Since our design goal is to reduce size and cost of the 
magnet, we choose the magnetomotive force as the objective func- 
tion of LP and minimize this. The objective function is given by: 

Z-2 (Siji 1 
i=l 

where si is a cross-sectional area of the ith coil element. 

(4) 

Fig. 1. Calculation model 
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Minimizing the objective function Z, we impose restrictions 
on both current density in the coil element and magnetic flux den- 
sity at the regulated point. With respect to the current density, we 
requite: 

/ ji 12 kxv i=1,2, . . . ,n (5) 

z, siji =(I 

where j,ax is the given maximum current density. Eq.(6) is im- 
posed for ease of fabrication. Moreover, since the coil region con- 
sists of a number of layers as shown in fig. 1, conditions on cur- 
rent density similar to eq.(b) may be imposed for each layer. At 
each regulated point we also require that r and z components of 
the magnetic flux density expressed by eq.( I) are bounded by: 

- AB,< B,< AB, (7) 

and 

Ba-AB,<B,IB,+AB, (8) 

in order to obtain a uniform dipole field with the good field region 
of a given size and field uniformity, where Bo is the given central 
magnetic flux density along the z axis, and ABr and ABz are toler- 
ances on the error field. Assuming that the sextupole component 
dominates in the error field, we write the tolerances as: 

AB,= 12c1,Bo(r-ro)z/ (9) 

and 

I 2 2\ 
ABI= czB,, ,(r-r,,) -z I (10) 

where (r. z) are cylindrical coordinates of the regulated point, r. is 
a given radius of the electron orbit, and c2 denotes the sextupole 
field strength which is determined by the given field uniformity. 

Following the numerical procedures explained so far, in 
principle the current density distribution can be optimized for the 
given design parameters described above. However, it should be 
noted that if geometrical parameters for the coil region such as the 
coil inner radius, number and width of coil layer are not suitably 
choosen, the LP might not converge or give an answer. In this 
sense, it is dcsirohle to obtain a suitable initial set of the geometri- 
cal parameters before optimizing the problem. 

In order to accumplish this, a simpler and faster optimiza- 
tion procedure based on a combination of Riot Savart’s law and 
LP is also used as a tool for the preliminary survey. In this meth- 
od, each coil element is divided into filamentary conductors and 
the matrix elements of (;,i are calculated by superposing the mag- 
netic fields produced by them. When calculating the magnetic flux 
density, we use the following analytic expressions for air core ge- 
ometry given by: 

i \ Bz=$ dk lKtk)- ;;;;;;zz: E(k), (12) 
where 

k= 
4 r r’ 

(r’f r)*+ (z’- z)~ 
(13) 

Here ltLo is the permeability of a vacuum, (r. z) are cylindrical co- 
ordinates of the regulated point, a filamentary conductor of current 
I is located at the point (r’, z’), and E(k) and K(k) are the com- 
plete elliptic integrals of the first and second kind. 

In eqs. (11)( 13), magnetic fields due to the iron shield are 
not taken into account. Nevertheless, this simple method is a use- 
ful tool to survey a wide range of various parameters. This is be- 
cause the major differences of magnetic fields between those cases 
with and without the iron shield are a dipole field of lo-20% of 
the central magnetic flux density and a small quadrupole field. 
Further optimizations by a combination of FEM and LP can easily 
be performed using the initail geometrical parameters obtained. 

Calculation Results 

As an example, we show some optimization results calcu- 
lated for ro=700mm, B,=3T, the good field region of 25mm radi- 
us and field uniformity of 5x10-4. 

Fig. 2 shows relationships between the minimized magne- 
tomotive force and the gap in the outer coil, for jmax=lOO, 200 
and 300 A/mm2, calculated by a combination of Riot Savart’s law 
and LP. We find that for each j,ax the calculated points fit a 
straight line. Using these results, the magnetomotive force can be 
estimated for a paticular case, considering the increase of central 
magnetic flux density due to the iron shield as a factor of lo- 
20%. 

Fig. 3 shows an optimal coil configuration and the magnet- 
ic flux lines in the r-z plane, for a 30mm gap in the outer coil, 
calculated by a combination of FEM and LP starting from the re- 
sults in fig. 2. In this example, an iron shield with infinite perme- 
ability and an inner radius of 2OOmm is considered, and the good 
field region is enlarged by iterating the optimization procedure sev- 
eral times until it reaches the upper limit. The minimized magne- 
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Fig. 2 Magnetomotive force as a function of gap length in the outer 
coil, calculated by a combination of Biot Savart’s law and 
LP 

and 
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Fig. 3 Optimal coil configuration obtained by a combination of 
FEM and LP, and magnetic flux lines 

tomotive force is -0.6MA*Turn. The good field region of -3Omm 
radius, which is approximately a half of the aperture radius, is ob- 
tained. 

If the dipole magnet is straight and uniform along the cen- 
ter line, it is weil known that case winding gives a high quality 
dipole field over the whole aperture. To test our method the opti- 
mal coil configuration is calculated for the same design parameters 
as in fig. 3 when the gap in the outer coil is zero. We find that 
the result shown in fig. 4 is very close to that of cos0 winding 
and a wide good field region is achieved. This fact ensures the va- 
lidity of the optimization method described above. Asymmetry 
seen in fig. 4 is due to the toroidal structure of the dipole magnet. 

good field region 
I coil , 

Conclusion 

A numerical technique based on linear programming and 2- 
dimensional field calculations by the finite element method has 
been applied to determine a coil configuration in a strongly curved 
superconducting dipole magnet. It was shown that by using this 
method an optimal coil configuration, which gave rise to an uni- 
form dipole field with the minimum magnetomotive force and the 
good field region of a required size and field uniformity, could be 
obtained. 
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Fig. 4 Optimal coil configuration obtained by a combination of Biot 
Savart’s law and LP, when the outer coil gap is zero 

496 
PAC 1989


