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Abstract 

SVe will describe a computer code based on an analysis for an 
emittance growth mechanism for electron beams in photoelectric 
injectors. The analysis leads to a generic injector design with 
a single external solenoid used for both focusing the beam and 
reducing the correlated emittance. The position of the solenoid 
is given by a complicated integral expression, depending on 
the accelerating gradient and rf focusing. The computer code 
described here integrates this expression and calculates the best 
solenoid lens position for a given phasing and field amplitudes 
of the accelerating cavities. 

Introduction 

In earlier papers,“’ we have described a technique of 
focusing a charged particle beam with a lens to allow exact 
compensation of the nonlinear space-charge forces before the 
lens with the nonlinear space-charge forces after the lens. This 
appears as a growth in the beam’s normalized rms emittance 
followed by a subsequent reduction, resulting in no overall 
emittance growth. This technique is only valid in the case of 
small radial distortions of the beam, with no longitudinal mixing 
of particles, thus requiring a sufficiently small longitudinal 
energy spread. This technique is responsible for the drast,ic 
impro\rement in emittance that is possible in linacs driven 
by photoelectric injectors3 instead of conventional thermionic 
cathodes. -4 photoelectric injector consists of a laser-driven 
photocathode in the first rf cavity in a linac section. This 
design provides extremely quick acceleration to multiple MeVs, 
so very little energy spread is introduced by the longitudinal 
space-charge forces, and the beam is transversely stiff enough 
not to appreciably deform. Because photocathodes are capable 
of producing hundreds of amperes to kiloamperes, longitudinal 
bunching is not necessary. However, the comparatively low peak 
currents possible from thermionic cathodes require longitudinal 
bunching. The resulting mixing of the particles removes 
the correlation of emittance with longitudinal position. This 
effective thermalization of the beam eliminates the ability to 
compensate for the nonlinear space-charge forces. The dominant 
emittance growth mechanism for both types of injectors under 
usual operating conditions is due to nonlinear space-charge 
forces.4,5 Because the technique described above can reduce 
the emittance for photoelectric injectors and not for thermionic 
injectors, photoelectric injectors can provide emittances an order 
of magnitude smaller for similar peak currents and total charges. 

In previous papers, we have discussed this technique 
for a simple space-charge model, requiring self-similar beam 
expansion. 
included. 

The effects of rf acceleration and focusing were 
In this paper, we will study the consequences of 

using a realistic space-charge model. With the earlier model, the 
compensation of the nonlinear space-charge forces was possible 
just by varying the lens strength, but with the additional 
complexity of the new model, more parameters will be needed. 
However, we will show that enough extra parameters will be 
available if we allow tailoring of the accelerating gradient profile 
of the linac cavities. As before, we will show that we can 
also select the lens position to provide a beam focus at the 
emittance minimum. Equations will be presented that have 
been incorporated into a simple FORTRAN program, allowing 
for a quick iteration of the gradient profile and lens position 
to obtain a rough design. This would then serve as a starting 
point for a more detailed simulation using ISIS, PARMELA, or 
other accelerator design codes. 

Description of the Physical Model 

Before we develop the analytic model, we will describe our 
physical model, which is similar to our earlier one. 
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A uniform slug beam of some initial aspect ratio A, is 
originated at some longitudinal location -zr? with some initial 
relativistic gamma yi and beta $1. We use an Internal cylindrical 
coordinat,e system p, C that travels and expands with the beam 
so that the outer edge of the slug is defined by p = 1 or C = fl 
(Fig. 1). This slug beam is accelerated by some external rf 
gradient, obeying 

dy -G(Z) -=----- 
dz me2 (1) 

The slug is focused by a lens at z.= 0 and propagates to some 
distance z beyond it. The accelerating gradient E*(Z) is variable 
to the degree that the field can be graded between successive 
cavities, and we assume we can vary it this amount to suit our 
needs. 

P 

Fig. 1. Slug beam internal coordinate systeln 

I\% next assume that the lens is linear and infinitely thin. 
LYe have shown before* how to include the effect, from a thick 
lens, and it does not effect the following development. However, 
in the design of a practical photoinjector, as thin a magnetic 
lens as possible should be used, because including a bucking coil 
to ensure no axial magnetic field on the cathode will push the 
axial magnetic center of the lens further from the cathode. 

We also require that there be no radial distortion of the 
beami in particular, the slug beam cannot radially bow out at 
its axial center. How well this assumption is met decides to what 
degree the emittance growth can be eliminated. Because we will 
bc working in the beam’s frame of reference, we also require in 
this frame that the beam density be uniform and that there be 
no appreciable relative longitudinal motion. 

Finally, we will, for clarity, provide our definition of 
emittance. We will use the usual definition for the normalized 
rms transverse emittance, given by 

e, = 2L3-f J--=--x , (2) (r-)(r ) - (1 I‘ ) 

where the brackets refer to an ensemble average over the particle 
distribution, and r’ is dr/dz. If r = or for all particles and 
some cr, the rms emittance is clearly zero. In this case, all the 
particles line up along the same azimuthal angle in their phase- 
space projection, and they enclose zero area. We know from 
Liouville’s theorem that the six-dimensional phase-space volume 

-=i/,.J:llM 
p(z, I’, y, y’, z, z’)d.zdr’dydy’dzdr’ 

is a constant of the ensemble motion. The rms emittance above 
is the rms area of a two-dimensional projection of this, and is not 
conserved in general. The rms emittance is useful because in the 
special case of only linear forces, the rms emittance is a constant 
of motion, and it can provide an accurate estimate of the rms 
beam waist of a focusing beam. We are interested in reducing the 
rms emittance because at high energies the space-charge forces 
are negligible and all the focusing forces are typically linear, and 
the rms emittance is a good measure of how easily the beam can 
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l)e transported and focused. The technique to reduce the rms 
emit tance works solely because it happens while the forces are 
still nonlinear. 

Analytic Model 

i2lthougli the beam is in general accelerating, it is possible to 
construct an instantaneous inertial frame of reference comoving 
nith the beam. If t,hc acceleration is sufficiently small compared 
to the beam length so retardation cffccts do not create relative 
lxxm motion and \arintions in density, then the transverse 
~~nrticlt: motion obeys 

$ = G%i’) > 
D 

where tb is the proper time in tllc instautaneous beam frame of 
refercncc and Xb is the force times the electronic charge over its 
mass in that frame. The laboratory frame is connected to the 
beam frame by 

Y,!kdtb = dZ , 

and the transverse cqllation of motion becomes 

&q,&j = x = E,.le =7x1 
dt dz b yn2 

\vhere the I subscril,t refers to the laboratory frame. \\:e have 
used the relations 

A, = -$Er,z % m 
md l~c~ausc there is no magnetic field in the beam frame 

&I = 7Er.b 
Recalling, we start at z = --d,% 
yicltls 

and integrating Eq. (3) once 

Y& = 
. J 

L XI 
--dz’ + r;yl@lc , 

-=I PC 

where 3 1 and ,L?l are the initial particles’ gamma and beta at 
,- z.2 --II. Integrating again gives 

Here the y’s, /3’s, and Xl’s arc functions of the dummy 
integration variable z’ or i that they are associated with \mtler 
the integral; the 1‘1 and r \ arc the beam edge initial conditions 
at z = -21. Just before the lens at x? = 0, WC have 

ant1 

1 

J 

o x 
41 = & -i, $“~ 

..I + p 
rp ) 

using lil to refer to before lens. Because the lens is liwar, the 
coortlinatcs transform as 

1.’ = ?(,I - Cl,,-&, and r =l‘b, , 
where cul is the inverse lens focal length. Following through with 
the algebra yields at a given location 2 downstream from the lens 

I.’ = * -z, l3c J 
-t&’ +l~;?L$ - *JE!$ 

( 

r1 

+I;.:,l $+12, $I;, $A[) , (G) 

and r=rl+r~yI~l~:,y+i~i:,~~l 

J 
2 - n,(t) + r;yl/31 

J 

0 

+ r;ylA, if! 
” YP -i, YB 

+II’;, $J_I, ~wo~i~ , (5) 

where nom y0 and 0, are the particles’ gamma and brta at the 
lens position i = 0. 

Although the term rIyI,$l may appear to the poorly defined 
for electrons coming from a. photocathode in an rf cavity with 
rf focusing (caused by using a curved back wall containing the 
cathode), a computer simulation can be used to calculate this 
term with only smaIl error from 

r:ylB, = - T1 
r 

%roa. 5 ’ 
_ -21 

n-hcxrc .zcross is the location a zero charge beam would cross the 
axis. 

Space-Charge Model 

We ha\~! shown earlier that if the functional dependency of 
XI can be factored into 

A = k(p: C)X(=) , is) 

an N, citli be found so the ratio r/r’ at .z is independent of k(p, C); 
thus, the ratio is the same for all particles in the enscmhlc. From 
Eq. (1). we know then that the rms emittance is zero. However, 
the form in Eq. (8) for the space-charge force is not very realistic. 
III this part we will try to get a better model, and in the next 
part we will examine its consequences. 

In Fig. 3, we see plots for E,.b versus the internal radial 
coordinant p for different aspect ratios .4, = -@cT~/T,~ 

.P 
at the 

beam’s axial center and edges, where r&ge is the radla edge of 
the beam and 5-b is the beam’s temporal duration. \%‘e assume 
as before that the charge density is uniform. The units arc 
arbitrary, but consistent between the different aspect ratios. 

0 0.5 1.0 

Asprrt Ratio 4.4 

Fig. 2. Radial electric field vergers p plots for the axial center (top) and 
edge (hottonl) of the slug beam for sane different aspect ratios. 

Many functional forms can be chosen to satisfy these plots 
to varying degrees. There are two ma.jor effects that we want 
to preserve in ours. First, for small enough aspect ratios, there 
is no difference in E, between the axial slices; but there is a 
strong nonlinear radial dependence. Also, for sufficiently large 
aspect ratios, the nonlinear radial dependence has been replaced 
by a variation in the radial electric field for different axial slices, 
being larger in the axial center and only half as big at the ends. 
M’e will use a form of the space-charge force, with the constants 
found from fitting the curves in Fig. 2, that explicitly shows 
these effects: 

XI A7 -=- 
P Y2 

1 + 2.J5p2e-“v/0.=’ _ ; (1 _ e-A,/O.36 )I > (‘3) 
“‘lerc’O=~ 
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The factors p2 and C2 can be replaced by any other more 
realistic terms, with no changes in the following results, except 
that the constants in the exponent terms must be modrfied. 

Integral Equations 

Eqrlation (9) has doubled the complexity of the space-charge 
model from Eq. (8). The general technique to obtain a solution 
so that 

T; rj -=- 
r; 7.5 

for all particles i and j is to explicitly write out 

0 = i-;r; - T-jr: 

and see which terms do not vanish identically. Using Eq. (8) 
leads only to requiring that the coefficient of the term 

[k(Pi, Ci) - k(Fj, Ij)] 

be zero, which could be satisfied with the proper choice for 011. 
Now, with Eq. (0) for the space-charge force, the coefficients of 
the three terms 

Pf -P’: ? I,’ - c; > and i’;pj - Cjpi 

mnst be zero. Let’s define certain integrands to simplify the 
expressions for the coefficients: 

Then, with 

II = A, 

I* = Xo2.25e4Jf3J35 

1, = + (1 - e-W39 

(104 

(104 

(W 

(1%) 

(1011) 

(1Oi) 

i=~(r’+r:-,‘5’i,~+/P,~~~,~d~) , 
clod 

+$‘[zl$-~;l&di , 
the three equations that must be satisfied become 

(BI - CH) - cq(EI + BL - CK - FH) = 0 , (lla) 

(BG-AH)-a@G+BJ-AK-D@=0 , (lib) 

and (CG - AI) - a,(FG + CJ - AL - DI) = 0 . (11~) 

These equations are nonlinear, but can be satisfied with a 
sufficient number of variables. In particular, if the accelerating 
gradient can be tailored, integrals of the form 

J 

dz 

2 
and 

J 
Ldt 
Y2BC 

for n = 1,2,3 can be varied sufficiently to provide enough 
additional flexibility along with tuning (~1 to find a solution. 
An alternative technique would bc to include two more lenses 
at different locations. Although this would lead to a quartic 
equation for the values of the lenses’ focal strengths, fortunately, 
all terms quadratic and higher drop out, leaving a simple linear 
system to solve. Of course in general, the integrals depend on 
the lenses’ strength because they modify the beam’s aspect ratio 
through focusing, but, typically, the coupling is sufficiently weak 
so this is not a problem. 

Iteration Procedure 

We have written a short FORTRAN code ICEPIC (for 
Integration of Coupled Equations for Photoelectric Injectors 
Code) to integrate Eqs. (6) and (11). Iterating over possible 
accelerating gradients and minimizing the error in these 
equations provides for a design that has removed as much of the 
correlated emittance as possible, but still with a nicely focused 
beam at the downstream end of the linac. 

Conclusion 

We have presented coupled integral equations that, if solved, 
lead to a design for a photoelectric injector that has removed 
correlated emittance. The analysis includes a more sophisticated 
space-charge model and shows that the ability to tailor the 
accelerating gradient is sufficient to minimize the error in these 
equations to a level that provides only slight emittance growth. 
Emittance growth from rf effects have not been included here; 
thev have been discussed before, and it is assumed the the 
injector design has minimized them. The effects of the rf lens at 
the entrances and exits of the rf cells has also not been included 
but could be with some additional algebra and would not change 
the form of the solution. 
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