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Introduction
Three-dimensional electromagnetic codes which solve Maxwell’s
equations in the frequency domain are powerful numerical tools in
design of RF cavities. Frequencies of TE and TM modes as well as
values of R/Q and @ due to wall losses can be calculated accurately
with codes such as MAFIA.! The major limitation of these codes is
their inability to calculate directly the electromagnetic behavior of
externally loaded cavities since there can be no net energy flow across
the boundaries of the model structure. Time domain 3-D codes are
capable of calculating output power flow into external waveguide, but

at the expense of extremely long run time.

We have developed two simple methods to calculate the power
transport through an external waveguide of a loaded cavity utilizing
the RF parameters obtained from the frequency domain codes. In the
first method the external power loss through an open waveguide is ex-
pressed in terms of equivalent circuit coupling parameters between a
closed waveguide and a cavity to which it is connected. As we shall
see, this equivalent circuit approach is limited in its applicability only
to structures with high loaded Q values, say, @ > 200. In the second
method, the power flow through an external waveguide is calculated
from an analysis of the electromagnetic field components of the stand-
ing waves in the closed waveguide-cavity structure. Qur models make
use of the MAFIA code to obtain values of structural parameters and
fields when an external waveguide is abruptly terminated with a metal
surface. A typical model consists of an output cavity attached via an
iris to a short waveguide section ended with a conducting cap. Our
methodologies of calculating the loaded @ in terms of the parame-
ters of the closed waveguide-cavity model are described in the follow-
ing sections. We have obtained reasonable and encouraging results for
several loaded cavities whose values of @y liave been experimentally
measured. Of particular interest is the application to low-Q structures
such as the relativistic klystron output cavities. The electromagnetic
field method yields good agreement with experimental measurements.
This method has also been successfully applied to high gradient accel-
erating structures with slots for damping out higher modes as recently
proposed by Palwmer.?

Equivalent Circuit Approach

The main assumption in this model is that a closed cavity-
waveguide structure can be considered as two separate equivalent cir-
cuits, each with a capacitor C;, an inductor L;, and a series resistor
R;, which describes the wall losses. When the iris connecting the cav-
ity and the waveguide is opened, the two circuits are combined and
coupled through a mutual inductance (m) and a mutual capacitance
{¢) which together account for the gap voltage across the iris. This
equivalent circuit is shown in Fig. 1. The circuit parameters for a
given mode can be related to the frequency, shunt impedance R and
R/Q of the closed cavity-waveguide structure. The cavity parameters
are defined in the usual way by:
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Equivalent circuit for closed waveguide-cavity.

Fig. 1.
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where w is the frequency of a given mode, U is the stored energy, P is
the power dissipation due to wall losses, v is the speed of the particles
passing through the cavity, F, is the component of the electric field
along the direction of the beam.

In order to calculate m, we run MAFIA with a finite closed sec-
tion of the waveguide attached to the cavity via an iris. Neglecting
the series resistances R; which are much smaller than all the other
impedances, we find the resonant frequency wg for the equivalent cir-
cuit shown in Fig. 1 by the relation:
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for m? < L1L;. In Eq. 5, w; and wy are the frequencies of the respec-
tive circuits of the cavity and waveguide. Also, we have assumed that
mutual inductance is the dominant coupling. The circuit parameters
Ly and C of the cavity are related to the frequency and (R/Q); by:

wy = (LICI)_I/Z (6)
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For a waveguide with dimensions a, b and h shown in Fig. 2, the
resonant frequency for a full wavelength TE 9; mode is given by:
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where ¢ is the speed of light in vacuum. R/Q for the waveguide is

given by:
@,- O [wim] . o

where 9 and ¢g are respectively the permeability and permittivity in
free space. Obtaining wg from the MAFIA calculation for the closed
cavity-waveguide structure, we can solve for the mutual inductance m

using Eq. 5.
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Rectangular waveguide dimensions.

When the end of the waveguide is opencd to allow the outflow of
power, the equivalent circuit of the loaded cavity is shown in Fig. 3,
where Z is the impedance of a matched load at the end of the open
waveguide. If we assume the circuit parameters depend only very
weakly on frequency, i.e., the mutual inductance m remains approxi-
mately the same when the waveguide is open, the loaded @ value can
be calculated by:
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Fig. 3. Equivalent ciccuit for opened waveguide-cavity.
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Asan example, we can estimate Q, for the cavity-waveguide struc-
ture shown in Fig. 4 with the simple method just outlined. The closed
cavity parameters calculated from MAFIA are fp 11.341 GHz,
Q = 3.672 x 10%, R(shunt) = 5.37 x 1059, and R/Q = 146.21 Q).

Using these numbers the cavity inductance is calculated from
Eqs. 5and 6 tobe Ly = (R/Q)/wg = 1.97 x 1072 H.

For a finite section of a rectangular WR90 waveguide with the
dimensions @ = 1.016 cm, b = 2.286 cm, and h = 2.488 cm, we find
f2 = 13.727 GHz, and L, = 1.086 x 10~° L.

Substituting the above numbers into Eq. 5, we calculate the mu-
tual inductance to be m = 2.42 x 107'° H,

The matched impedance of the WR90 waveguide is given by:
(so/€0)'"* (212/c) 1)
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Using Eq. 10 we find the loaded @, value of the structure to be 210. In

the next section we will use a completely different and perhaps more

physically intuitive method of calculating the loaded @ value. For

comparison, the loaded Q. from the electromagnetic field approach is
220, which differs only by 5% from the equivalent circuit approach.

WR90
0.4
—
T 0.6
1,03
0.1 0.
0

r

Dimensions (in cm) of a high-Q;, cavity-waveguide coupler.

LTy =

£
)4

F—0.7—q

Fig. 1.

A criterion for the accuracy of the equivalent circuit approach can
be obtained by calculating R/Q from the expression:

R)_‘ =uRC1{1+ [ i (12)
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Equation (12) does not contain explicitly the coupling parameter m.
By comparing the MAFIA result of R/Q for the cavity-waveguide
structure with Eq. (12), an estimate of the degree of consistency can
be made. For the example of Fig. 4 considered above, the values of
R/Q from these two calculations are: MAFIA: R/Q = 128.0 and
Eq. (9): R/Q = 118.0, or about 8% difference. This indicates that the
equivalent circuit approach is a good approximation for the high-Q
cavity shown in Fig. 4.

Electromagnetic Field Approach

The @ value of a waveguide loaded cavity can be found once the
electric field of the outgoing travelling wave is determined. As noted
earlier, however, 3-D frequency domain codes are not capable of cal-
culating the outgoing fields at the waveguide directly. Rather than
showing an outgoing travelling wave, MAFIA code typically calculates
a standing wave pattern in the waveguide because of the reflective
metallic boundary at its end. We propose herein a method which re-
lates the outgoing electric field for an open waveguide with the stand-
ing wave pattern for a closed waveguide.

To estimate these fields, we attach to the cavity a section a waveg-
uide longer than a half wavelength, i.e., h > (A/2). A typical standing
wave pattern of the axial field E, along the axis of the waveguide is
shown in Fig. 5. We note in this figure the finite value of F, at the
iris, or entrance from the cavity to the waveguide, and the zero of E,
at the closed end, y = h. At y = v, the field has a local maximum
E, = Enas, half of which is going forward with an amplitude £,
and half backward with E,: E,; = E. = (1/2) Eper. These for-
ward and backward fields are the result of multiple reflections between

the end of the waveguide and the cavity. Let us assume that the domi-
nant reflection at the cavity side is at the iris opening. We can express
the forward wave E,; at y = y; by the outgoing electric field I:
I

1+ pexp(—2i¢)

where p is the reflection coefficient at the iris, & = 21 /X is the wave
number and ¢ = kh is the phase shift in a single transition of the wave
along the waveguide section. Equation (13) expresses the forward elec-
tric field E,; at y = y; as a function of two unknowns: the outgoing
electric field I and the iris reflection coefficient p. To find these vari-
ables, we shall assume that they are not strongly {requency dependent
around the cavity resonance frequency. Since each MAFIA run gives
only one value of E,q;, we need two runs with slightly different waveg-
uide heights in order to solve for the two variables I and p. Utilizing
Eq. (13) for the two cases, we can write the outgoing electric field I as:

_ Ezfl exp(iklyl){l _exp[21(¢2_¢])]} (14)
T 1= (E.51/E:p2)exp|2i(¢2 — ¢1)] explilkiy — ka2y2)] ’
where the indices 1 and 2 refer to two parameters obtained from two
different MAFIA runs with waveguide heights of h; and hy respee-
tively. Making use of the relation:

E.sexp(iky) = (13)
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and normalizing the fields with the potential:
00
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we obtain the final expression for the normalized outgoing electric field:
—1 Ep1exp(igy) {1 — exp[2i(¢2 — )]} (n
1= (Ecpr/Eepa) expli($s — 61)]

where the = symbol on variable X indicates the normalization by the
voltage:

?:

(18)

The shunt resistance R related to the outgoing power flow can be
calculated from:

72
rr=l ZEa (19)
2 Ho W
where we assume that the power flow is in the TEq; mode. The loaded
shunt resistance Ry, is given by
1 1 1
— = =4 = 20
R, R + R (20)
where R, is the wall loss shunt resistance of the closed cavity.
The waveguide loaded Q-value, @, can be obtained from:
Ry
QL= (21)
(R/Q)c

where (R/Q). is the value of R/Q for the closed cavity.
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Fig. 5. Standing-wave pattern in waveguide.

To demonstrate the above algorithm, we first return to the high-
@ cavity shown in Fig. 4. Terminating the waveguide 2.49 cm away
from the iris opening, we use MAFIA to calculate the electric fields
along the waveguide axis, and the results are shown in Fig. 6. From
this run we calculate E.pq and ¢y to be: E.pp = —~5.5523 m-! and
¢; = 4.8246 rad. Adding 0.25 cm extension to the waveguide and
running the program again we obtain: F,p» = —6.9050 m-! &,
5.2836 rad. From Eq. (17), the outgoing electric field is calculated
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to be / = —10.7877 m~'. Substituting this result together with the
frequency w and wave number k into Eq. (19), we obtain the power
flow shunt resistance to be R = 3.4185x 104 Q0. The closed cavity shunt
resistance is given by MAFIA to be R, = 5.3690 x 105 Q. The loaded
shunt resistance is calculated with Eq. (20) to be R = 3.2139 x 104 2.
The value of R/Q for the closed cavity is (R/Q). = 146.21. The
loaded @ value can now be calculated from Eq. (21) to be @ =
219.8. As noted earlier, for a high-@Q cavity the value of Qp calculated
with the clectromagnetic field approach is in good agreement with the
equivalent circuit approach (Qr = 210.0).
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Fig. 6. MAFIA electric field lines.

Analysis of Low-( Cavities

Much attention has been focused recently in the development of
high-frequency, high-power cavities for applications such as future lin-
car colliders and compact accelerators. It is therefore of particular
interest to see the extent to which the methodologies discussed in the
previous sections would be applicable to low-Q cavities; and how these
approaches could be used as computer aided tools in designing these
cavities. We consider in the following two relativistic klystron cavi-
ties and present numerical calculations to compare with experimental
measurements.

Case 1. Relativistic Klystron Output Cavity with Qp = 20 (SL4)3

An output cavity designed by T. G. Lee for a relativistic klystron
experiment currently in progress at LLNL is shown in Fig. 7. The
cavily coupled to a WRI0 waveguide is designed to extract power at
11.4 GHz, and has been measured to have a loaded @ value of 20.
For this low-Q cavity the simple assumptions in the equivalent circuit
approach lead to rather larger discrepancy between the calculated @
and the measured value, since the consistency criterion which we have
suggested before [Eq. (12)] for the equivalent circuit method is not met.
We turn therefore to the electromagnetic field approach to calculate
the loaded @ for the output cavity.
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Fig. 7. Relativistic klystron SL4 output cavity with @y = 20 (dimen-

sions in inches {(cmj.
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a. For simplicity we first calculate the loaded @ ignoring the small
discontinuity in the WR90 waveguide. We have made two
MAFIA runs using a relatively coarse mesh for the cavity shown
in Fig. 7 attached respectively to a 1.0-inch and a 0.8-inch sec-
tion of the WR90 waveguide. The results for the closed cavity-
waveguide structures are shown in Table 1, where F is the nor-
malized forward amplitude defined as: F = (1/2) (Epmez/V) =
—16.343 m~! where the normalization factor V is given by
Eq. (16).

Using the values in Table 1, we calculate the normalized forward
intensity from Eq. (14) to be | T |= 30.370 m™1.

The shunt resistance R related to the outgoing power flow, given
by Eq. (19), is thus 4323 Q.

The shunt resistance R, of the closed cavity is 5.45 x 10% {2, and
the loaded shunt resistance Ry, given by Eq. (20), is 4306 Q.
Using the valie of (R/Q). = 137.02Q. the loaded @ is calcu-
lated to be Qy, = R, /(R/Q). = 314

Table 1. Parameters for SL4 Output Cavity

(Q = 20) with Coarse Mesh

f(CGHz) 11.1637 11.2991
k (em™1) 1.8916 1.9265
A (cm) 3.3216 3.2614
h (cm) 2.5400 2.0320
# (rad) 4.8047 3.9147
Emar (V/m)]|  -0.1643 -0.1857
V (V) 5.027 x 107*|5.333 x 1073
# (m=1 -16.343 17411

b. The effect of the discontinuity in the waveguide (see Fig. 7) has
been estimated. Although each discontinuity introduced into
the structure would cause an infinite number of reflections and
hence contribute to the clectromagnetic field at a given point,
the net effect is to reduce the value of Qg only by about 2%.

c. The accuracy of the above calculation can be improved by re-
peating the MAFIA runs with a finer mesh. The result for this
set of runs are summarized in Table 2. A plot of the electric field
in the closed cavity is shown in Fig. 8 The resulting value of @,
for the open cavity, considering only a single mode propagation,
is 28.2, which compares favorably with the measured valne.
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Fig. 8. F, versus y plot for Q@ = 20 cavity.
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Table 2. Parameters for SL4 Output Cavity
(@ = 20) with Fine Mesh
{ (Gllz) 11.2113 11.3760
k (cm™1) 1.9039 1.9463
A (em) 3.3001 3.2283
h (cm) 2.5400 2.0320
o (rad) 4.8359 3.9549
Frar (V/m)| -0.2108 -0.2043
V (V) 5.140 x 107%| 5.538 x 10~3
F (m™) -20.516 ~18.446

d. In principle, all modes capable of propagating in the waveguide
contribute to the power loss. The effect of modes other than
the TE mode which we have calculated above can be estimated
by examining the relative field amplitudes to E,. For the rela-
tivistic klystron output cavity, other field components are small.
Thus the single mode dominance in the power extraction is a
reasonable assumption. Although our methodology can be ap-
plied in a straightforward way to other modes, the computations
could be tedious if many modes contribute to the value of Qr.

Case 2.

Next we consider another low-( output cavity tested in the rel-
ativistic klystron experiment with a subharmonic drive (5.7 GHz) at
LLNL. This cavity, designed to extract lower power at 11.4 GHz, has
a measured value of loaded @ of 40.  Again, with two MAFIA runs

at waveguide lengths ot 1.0-inch and 0.8-inch, we calculated a loaded
Q@ value of 43.7.

Relativistic Klystron Output Cavity with ) = 40

Application to Damped High Gradient Accelerating Structure

We have applied the electromagnetic ficld method to the calcula-
tion of Qg for a transverse mode of a 17 GllIz slotted high gradient
structure (Fig. 10). The HGS was scaled from a test model designed
by Palmer with the purpose of damping the transverse wakes. A dou-
ble ridge waveguide was used to couple the transverse TE waves out of
the cavity. A MATFTA field plots for this structure is shown in Fig. 11.
Using the method described above, we have calculated a value of 9.1
for the waveguide loaded @ for the first transverse mode above the
fundamental of this structure.
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Fig. 10. 17 GIz damped high gradient structure.
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Fig. 11. 17 GHz HGS transverse mode above the fundamental.

While we have demonstrated that our method is applicable to
such low-@) structures, we have also in the course of our analysis dis-
covered several areas where the design of the damped HGS needs im-
provement. Among these include the proper design of the double ridge
waveguide so that its cutoff frequency is below those of the damaging
transverse modes. It is important however that the cutofl frequency
must be above the fundamental, so that the power associated with the
accelerating mode stays within the structure. Fig. 12 shows the cutoff
frequency of the double ridge waveguide as a function of the gap size.
other dimensions being kept constant.

TE1D MODE

FREGUENCY CUTOFF (61}

GAP SIZE  (ma)
Fig. 12.  Cutoff frequency for double ridge waveguide.

In addition, a transverse mode (Fig. 13) with a frequency lower
than the fundamental was found for the structure shown in Fig. 10.
The existence of such a mode is clearly not tolerable since it would
render futile the concept of damped HGS. Currently we are investigat-
ing several alternate designs in order to eliminate this low-frequency
transverse mode, while preserving the shunt impedance and the field
structure of the fundamental mode.

eLotied 17 g s, tuli

Fig. 13. 17 GHz HGS transverse mode below the fundamental.
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