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Introduction 
Three-dimensional electromagnetic codes which solve Maxwell’s 

equations in the frequency domain are powerful numerical tools in 
design of RF cavities. Frequencies of TE and TM modes as well its 
values of R/Q and Q due to wall losses can be calculated accurately 
with codes such as MAFIA.’ The major limitation of these codes is 
their inability to calculate directly the electromagnetic behavior of 
externally loaded cavities since there can be no net energy flow across 
the boundaries of the model structure. Time domain 3-D codes are 
capable of calculating output power flow into external waveguide, but 
at the expense of extremely long run time. 

LVe have developed two simple methods to calculate the power 
transport through an external waveguide of a loaded cavity utilizing 
the RF parameters obtained from the frequency domain codes. In the 
first method the external power loss through an open waveguide is ex- 
prcsscd in terms of equivalent circuit coupljng parameters between a 
closed waveguide and a cavity to which it is connected. As we shall 
SW, this equi\alrnt circuit approach is limitrd in its applicability only 
to structures with high loaded Q values, say, Q1, > 200. In the second 
method, the power llow through an external wavcguide is calrulatcd 
from an analysis of the electromagnetic field components of the stand- 
iug waves in the closed wavcguidc-cavity structure. Our models make 
use of the hlAFI.4 code to ohtain values of structural parameters and 
fields when an external waveguide is abruptly terminated with a metal 
surface. A typical model consists of an output cavity attached via an 
iris to a short waveguide section ended with a conducting cap. Our 
methodologies of calculating the loaded Q[, in terms of the parame- 
ters of the closed waveguide-cavity model arc described in the follow- 
ing sections. \Z’e have obtained reasonable and encouraging results for 
several loaded cavities whose values of QL liavr hwn experimentally 
mrasured Of particular interest is tht application to low-Q structures 
such as thr rclativibtic klystron output cavities. The electromagnetic 
firld method yklds good agreement with cxpcrimrntal meaSurrmEnt.s. 
This method has also been successfully applkd to high gradient accel- 
crating structurcx with slots for damping out highrr modes as rcrcntly 
proposed by Paln~er.2 

Equivalent Circuit Approach 

The main assumption in this model is that a closed cavity- 
wavt>guidr structure can be considered as two separate equivalent cir- 
cuits, each with a capacitor Ci, an inductor Li, and a series resistor 
II,. which describes the wall losses. When the iris connecting the cav- 
ity and the waveguide is opened. the two circuits arc combined and 
coupled through a lnutual inductance (m) and a mutual capacitance 
(c) \vllich tog+,thc,r account for the gap voltage across the iris. This 
t-quivalent circuit is shown in Fig. 1. The circuit parameters for a 
given mode can br related to the frrclucncy, shunt impedance 17 and 
n/Q of the closed cavity-waveguide structure?. The cavity parameters 
are det’incd in the usual way by: 

R 1 SE,(r.y,z)exp(iwz/u)dzI’ -= 
Q 2wl’ 

Fig. I. Equivalent circuit for closed waveguid+cavity Fig. 3. Equivalent circuit for opened waveguide-cavity. 

where w is the frequency of a given mode, II is the stored energy, P is 
the power dissipation due to wall losses, 1: is the speed of the particles 
passing through the cavity, E, is the component of the electric firlId 
along the direction of the beam. 

In order to calculate m, we run MAFIA with a finite closed scc- 
tion of the waveguide attarhed to the cavity via an iris. Nrglccting 
the series resistances R, which are much smaller than all the other 
impedances, we find the resonant frequency ~JH for the equivalent cir- 
cuit shown in Fig. 1 by the relation: 

WRL, 
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- - 
WRCl >( 

LU’RLZ - - 
WHC2 > 

= (w/pn)2 (3) 

or 

wR=,,(l+ (f) (&) [$&I} (5) 

for m* < L,Lz. In Eq. 5, w1 and ~2 arc the frequencies of the respec- 
tive circuits of the cavity and waveauide. Also, WC have assumed that 
mutual inductance is the dominant coupling. The circuit parameters 
L1 and C, of the cavity are related to the frecplency and (n/Q)l by: 

and 

WI = (L1CJ”2 (‘3) 

($), = ($L)“’ 
For a waveguide with dimensions a. b and II shown in Fig. 2, the 
resonant frecluenry for a full wavelength TE102 modr is given by: 

“2 = q$ + g , (8) 
where c is the speed of light in vacuum. H/Q for the wavrguitlc is 
given by: 

($), = (:) (:yz [(W &,2] : 

where ILO and cg arc respectively the permeability and prrrnittivity in 
free space. Obtaining we from the MAFIA calculation for the closed 
cavity-waveguide structure, we can solve for the mutual inductance m 
using Eq. 5. rT- 

Fig. 2. 

kJ 
,;---... Rrctaneuldr wavrfiuitl~~ (linl(~nsions 

-,J? 

When the end of the waveguide is oprnrd to allow the outfIow of 
power, the ecluivalent circuit of the loaded cavity is shown in Fig. 3, 
where 2~ is the impedance of a matchrd load at the end of the open 
waveguide. If we assume the circuit parameters depend only very 
weakly on frequency, i.e., the mutual inductance m remains approxi- 
mately the same when the wavcguide is open, the loaded Qr. value can 
be calculated by: 

QL = (f2 [RI + @+I-' 
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As an example, we can estimate QI, for the cavity-waveguide strur- 
turc shown in Fig. 3 with the simple mrt~hod just outlined. The closed 
cavity parameters calculated from ‘MAFIA are fR = 11.341 GIIz, 
Q = 3.672 x IO”. ~l(shunt) = 5.37 x 10s It, and n/Q = 146.21 0. 

Using these numbers the cavity inductance is calculated from 
Eqs. 5 and 6 to be Lt = (R/Q)/wn = 1.97 x 10mg H. 

For a finite section of a rectangular W’RQO waveguide with the 
dimensions a = 1.016 cm, b = 2.286 rm, and h = 2.488 cm, we find 
f2 = 13.727 GHz, and Lz = 1.086 x lo-” II. 

Substituting the above numbers into Eq. 5, we calculate the mu- 
tual inductance to be m = 2.42 x IO-lo 11. 

The matched impedance of the WI190 waveguide is given by: 
112 

ZTE,az = 
(ldfO1 (2hlc) 

[W/4* - WWI”’ ’ 
Using Cq. 10 we lint1 the loaded (21, value of the structure to be 210. In 
the next section we will use a completely different and perhaps more 
physically intuitive method of calculating the loaded Q value. For 
comparison, the loaded QL from the electromagnetic field approach is 
220, which differs only by 5% from the equivalent circuit approach. 

T 

t-4.7~ 

Fig. 4. Dimensions (in cm) of a highQr, cavity-wavrguidr coupler. 

A criterion for the accuracy of the equivalent circuit approach can 
be obtained by calculating R/Q from the expression: 

R -’ 0 s 
(12) 

the end of the waveguide and the cavity. Lrt, us assume that the domi- 
nant rcllcction at the cavity side is at the iris opening. W’e can express 
the forward wave E,/ at y = yr by the outgoing electric field I: 

E,f exdh) = 
I 

1 + p exp( -2iO) 

where p is the reflection coefficient at the iris, k = 2rr/X is thr wave 
number and +‘J = kh is the phase shift in a single transition of the wave 
along the waveguide section. Equation (13) expresses the forward elrr- 
tric field Ezf at y = yr as a function of two unknowns: the outgoing 
electric field I and the iris reflection coeIIicicrrt p. To find these vari- 
ables, we shall assume that they are not strongly frequency dependent 
around the cavity resonance frequency. Since each LTAFIA run gives 
only one value of E,,,, we need two runs with slightly different wavrg- 
uidc heights in order to solve for the two variables I and p. Utilizing 
Eq. (13) for the two cases, we can write the outgoing electric field I as: 

I= 
&I exp(kh)ll - exp[2i(d2 - 41111 

1 - (E,,r/&fs)ex~[2i(& - @1)1 exp[r(kryr - E2~2)1 
(14) 

where the indices 1 and 2 refer to two parameters obtained from two 
different M.4FI.4 runs with waveguide heights of hl and hZ rrspcc- 
tively. Making use of the relation: 

and normalizing the fields with the potential: 
00 

v= J EP(ZI r = 0) dz -co (1G) 
we obtain the final expression for the normalized outgoing electric field: 

7 = -i &I exP(+l) ( 1 - exPpi(42 - 41 )I } 
1 - (f&jr l&2) expb(42 - $1 )I 

(17) 

where the ^ symbol on variable X indicates the normalization by the 
voltage: 

The shunt resistance R related t.o the outgoing power flow can be 
calculated from: 

R-1 =A L1 kab 
2 10 w 

(1% 

where we assume that the power flow is in the TEel mode. The loaded 
shunt resistance RI, is given by 

Equation (12) does not contain explicitly the coupling paramctrr m. 1 

By comparing the MAFIA result of R/Q for the cavity-waveguide 
-=I.++ 
RL 

(201 
c 

structure with Eq. (I‘,?), an estimate of the degree of consistency can where R, is the wall loss shunt resistance of the closed cavity. 
be made. For the example of Fig. 4 considered above, the values of 
R/Q from these two calculations are: MAFIA: R/Q = 128.0 and The waveguide loaded Q-value, QL, can be obtained from: 

Eq. (9): R/Q = 118.0, or about 8% difference. This indicates that the 
equivalent circuit approach is a good approximation for the high0 QL = (R;;), 

(21) 

cavity shown in Fig. 4. where (R/Q)C is the value of R/Q for the closed cavity. 

Electromagnetic Field Approach Ii, 

The Q value of a waveguide loaded cavity can be found once the 
electric field of the outgoing travelling wave is determined. As noted 
earlier, however, 3-D frequency domain codes are not capable of cal- 
culating the outgoing fields at the waveguide directly. Rather than 
showing an outgoing traveRing wave, MAFIA code typically calculates 
a standing wave pattern in the waveguide because of the reflective 
metallic boundary at its end. We propose herein a method which re- 
lates the outgoing electric field for an open waveguide with the stand- 
ing wave pattern for a closed waveguide. 

To estimate these fields, we attach to the cavity a section a waveg- 

a 

b 

Yl 11 
Y 

nax 

Fig. 5. Standing-wave pattern in waveguide. 

uide longer than a half wavelength, i.e., h > (X/2). A typical standing To demonstrate the above algorithm, we first return to the high- 
wave pattern of the axial field E, along the axis of the waveguide is Q cavity shown in Fig. 4. Terminating the waveguide 2.49 cm away 
shown in Fig. 5. W’c note in this figure the finite value of E, at the from the iris opening, we use M.4FI.4 to calculate the electric fields 
iris, or entrance from the cavity to the waveguidc, and the zero of E, along the waveguide axis, and the results are shown in Fig. 6. From 
at the closed end, y = h. At y = yt, the field has a local maximum this run we calculate E,J~ and 41 to be: E,fr = -5.5523 m-’ and 

E, = Ema,, half of which is going forward with an amplitude E,f, 4, = 4.8246 rad. Adding 0.25 cm extension to the wavrguide’and 
and half backward with &b: E,j = E,b = (l/2) Em,,. These for- running the program again we obtain: E,fz = -6.9050 m-’ 02 = 
ward and backward fields are the result of multiple reflections between 5.2836 rad. From Eq. (17). the outgoing electric field is calculated 

190 
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to IT I = -10.7877 m-‘. Substituting this rrsult togdhrr rrmith !!I(, 
frrqurncy w and wave rrllmbrr I; into 1’:q. (lo), we obtain 111~ powr 
flow shunt rrsistanre to be R = 3.4185 x IO4 CF. Thr rlosrd cavity slrnnt 
r(‘iistance is given by MAFIA to be R, = 5.3690 x 10’ Cl. ‘I‘hv lo;ldcd 
shllnt resistanrr is calculated with Eq. (20) to be RL ,= 3.2139 x 10” sl. 
‘l‘hr valur of R/Q for the closed cavity is (fi/Q)c = 146.21. The 
Ioadrd Q value can now be calculated from Eq. (21) to be QL = 
219.X. AR noted earlier, for a high-Q cavity the value of QL ralculatetl 
with the cktrnmagnctic field approach is in good agrprment with 111~ 
rquivalrnt circuit approach (QL = 210.0). 

I’ig. fj. M.Al’1.A electric lield lines. 

Analysis of Low-Q Cavities 

I\luch attention has been foc~~cd rrrently in thp dcvrlopmtnt of 
high-frrquency, high-power cavities for applications such as fulure lin- 
car rollidcrs and compact acrrlrrators. It is therefore of partirlllar 
i~~tc,rrst to WC thr wtrnt to which the methodologies discussrd in tlrcv 
pr(‘vious srctions would be applicable to low-Q cavities; and how thr~ 
approarhcls could b(b used as computer aided tools in designing thcscb 
cavities. We ronsitlcr in the following two relativistic klystron cavi- 
tic75 and prcsrnt numerical calculations to compare with rsprrimc~ntal 
IIIC~LhlIrf’IllelitS. 

Cast 1. Rrlativistic Klystron Output Cavity with Qr. = 20 (Sl,.!)” 

An output cavity designed by T. G. Lee for a relativistic klystron 
csprrimrnt currrnfly in progress at LLNL is shown in Fig. 7. The 
cavity coupled to a WRDO waveguide is designed to extract power at 
11.2 Gllz, and has been measured to have a loaded Q value of 20. 
For this low-Q cavity the simple assumptions in the erluivalrnt circuit 
approach lead to rather larger discrepancy between the calculated QL, 
and the measured value, since the consistency critrrion which WC have 
suggested before [Eq. (12)] for the equivalent circuit method is not mrt. 
\Ve turn thrrcfore to the electromagnetic field approach to calculate 
the loaded Q for the output cavity. 

n. For simplicity we first calculate the loaded Q ignoring tht‘ <mall 
discontinuity in the WRQO waveguide. \Ve have made two 
hlAFIA runs using a relatively coarse mesh for the cavity shown 
in Fig. 7 attached respectively to a l.O-inch and a 0.8.inch sec- 
tion of the WRQO waveguide. The results for the rlosed cavity- 
waveguide structures are shown in Table 1, where F is the nor- 

malized forward amplitude defined as: F = (1/2)(E,,,,/V) = 
-16.343 m-l where the normalization factor V is given by 

Eq. (16). 

Using the values in Table 1, we calculate the normalized forward 
intensity from Eq. (14) to be 1 I I= 30.370 m-l. 

The shunt resistance R related to the outgoing power fIow, given 
by Eq. (19), is thus 4323 0. 

The shunt resistance R, of the closed cavity is 5.45 x 10” R, and 
the loaded shunt resistance RL, given by Eq. (201, is 4306 R. 
lJsiug the vaIuc of (H/Q),. = 137.02 $2. thr, ioatlr~l Qr, is talc+ 
l;ltcYl to br (21, = R{,/(N/Q),. = 31.1. 

‘I’atrlc 1. l’aramrtc~rs for SL.1 Oulpul (‘avil? 
(Q = 20) with Coarse hlrhh 

b. The rffrct of 1 hr diiwlifinllity in the> \vavt>g\iirlr (SC~C’ I,‘i:. ;:I h;ii 
bern rstimntrd. Althongh each ciisrontinuily introdurc>d into 
the structure would cause an infinite number of rellrrtions and 
hence contriblltc to the clcctromagnrtic lit-Id at a given point 
thr net c,ffrct is to reduce the ~~luc, of Q1, only Iby abollt 2’X. 

r. ‘I’hr accuracy of t trtx above calculation can br irnprov(~d 1,~ I(‘- 
peating the hlriFlh runs with a finer mesh. Thr rcslllt for tlli\ 
set of runs are ~umn~ari~~d in Tahlr 2. .1 plr)t of the) c+c.tric li(,lil 
in the rlos~l cavity is shown in Fig. 8. The rchulting value of Qi, 
for llic open cavity, conrilltring only ii single n~otli~ pfopagatiorl, 
is 28.2, whici~ conlparrs fa\orablv \vitli the m~~ur~il valuk~. 

IYg. 7. Il(,lativistic~ !ilystrori SI,.1 outpnl ravit,,v with 01, = 20 (diinr,rr- 
iioli 111 inchcxs (cm). 

191 

Fig. X. K, vf’r~us !, plot for (21, = 20 cavily. 
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Table 2. Paramc‘ters for SL.1 Output Cavity 
(Q = 20) with Fine Xfesh 

d. In principle, all modes capable of propagating in the waveguide 
contribute to the power loss. The effect of modes other than 
the TE mode which we have calculated above can be cstima.ted 

by examining the relative tirld amplitudes to E,. For the rrla- 
tivistic klystron outpllt cavity, other field components are small. 
Thus the single mode dominance in the power extraction is a 
reasonable assumption. Although our methodology ran br ai’- 
plied in a straightforward way to other modes, the computations 
could be tedious if many modes contribute to the value of QL. 

CIHW 2. Relativistic Klystron Output Cavity urifll Q = 40 

Next we consider another low-Q output cavity tested in the rrl- 
ativistir klystron experiment with a subharmonic drive (5.7 GTlz) at 
1,1,X1,. This cavity, designed t,o estrart lower power at 11.3 Gllz, has 
a mcasurcd value of loaded Q of 40. Again, with two XTAFIA runs 
at wavcguidc lf>ngths 01 1.0.inch and O.&inch, we calculated a loaded 
Q[, value of 43.7. 

Application to Damped High Gradient Accelerating Structure 

i\‘o have applied the electromagnetic field method to the ralcula- 
tion of Qezt for a transverse mode of a 17 GIIz slotted high gradient 
structurr (Fig. 10). The IIGS was scaled from a test tuotlcl drsignrd 
by Palmer with the purpose of damping the transverse wakes. 11 doll- 
ble ridge waveguide was used to couple the transverse TE waves out of 
the cavity. A hIAFIA field plots for this structure is shown in Fig. 11. 
Using the method described above, WE havr calculated a value of 9.1 
for the wavcguidr loaded Q for the first transverse mode above the 
fulltlarncntal of this structure. 

Fig. 10. 17 GIIz damped high gradient structure 

‘\\:ork supported in part by the 1)epartrncnt of Energy, contracts 
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I. 

Fig. 17. 17 GIIz IIGS transverse mode above the fundamental. 

While we have demonstrated that our method is applicable to 
such low-Q structures, we have also in the course of our analysis dis- 
covered several areas where the design of the damped IIGS needs im- 
provement. Among these include the proper design of the double ridge 
wavcguidc so tha.t its cutoff frequency is below those of the damaging 
tra.nsverse modes. It is important however that the cutoff frequcllry 
must be above the fundamental, so that t,he power associated wit11 the 
accelerating mode stays within the structure. Fig. 12 shows the cutoff 
frequency of the double ridge waveguide as a function of the gap size. 
other dimensions being kept constant. 

I TElO MODE 
I 

‘W l,LC ,m 

I<‘$. 12. Cutoff frequency for double ridgr waveguide. 

In addition, a transverse mode (Fig. 13) with a frcrjucnry IOH.C’I 
than the fundamental was f01Jr1t1 for the strurtnrr shown in Fig. IO. 
The existence of such a mode is clearly not tolerable since it would 
render futile the concept of damped ITGS. Currently we are investigat- 
ing several alternate designs in order to eliminate this low-freclurnry 
transverse mode, while prrsrrving the slulnt impcdanrr and the field 
structure of thr fundamental JllOtle. 

Fig. 10. 17 GIIz IIGS transverse mode below the fundamental 
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