
ELECTRIC POLARIZABILITY AND MAGNETIC SUSCIEPTIBILITY 
OF SMALL HOLES IN A THIN SCREEN 

R.L. Gluckstern and Rui Li 
Physics Department, University of Maryland, College Park, MD 20742 

and 

R.K. cooper 
AT Division, LANL, Los Alamos, NM 87545 

I. Introduction 

In the design of r.f. structures there are many 
applications where two or more regions are coupled 
through a hole in a thin metallic screen. When the 
hole is small compared to the r.f. wavelength, the 
electromagnetic properties of the hole can be 
represented by an induced electric dipol? moment and an 
induced (vector) magnetic dipole moment. In this 
paper we develop methods to obtain results for x, the 
electric polarizability and CL the magnetic 
susceptibility of a hole of general shape. A simple 
relation between x and $ has also been discovered. 

of the hole using Eq. (2.1) and subsequently use this 
as the "far field" in treating the electrostatic 
problem in the immediate vicinity of the hole. Similar 
considerations apply to Eq. (2.21. This procedure is 
valid only if the dimensions of the hole are small 
compared to the r.f. wavelength. Therefore the normal 
electric field and tangential magnetic field in the 
vicinity of the hole (coordinate3 denoted by (0)) are 

II. Coupling Integral 

Consider a cavity A of general shape, which has a 
small hole H on its boundary, as shown in Fig. 1. 

Figure 1 

Following Slater's formalism3, we write the actual 

field f?(2) e jut, F!(Z) e 
jut in the presence of the hole 

as an expansion in terms of the orthonormal complete 

set of field functions zrn(z), i?m& in the absence of 

the hole. AS a result we find 

km Jm 

m 

, (2.1) 

J m 
z. 8(?) = jk c em ___ 

m k2 - k; ' 
(2.2) 

where kc/2n = w/2x and kmc/2n are the resonant 

frequencies with and without the hole, and Z = 120n 0 
ohms is the impedance of free space. Here J, is a 

surface integral over the area of the hole 

J = m s H 
ds C;f . !! x gm:,) , (2.3) 

where 2 is the outward normal at the hole. 

Equation (2.1) is an integral equation since Jm 

depends on %?. Since there is a convergence problem in 
Eqs. (2.1) and (2.2) in the plane of the hole, we 

evaluate the normal component of s(z) in the vicinity 

km J 
, 

m. 

E Az(O) =Ce (0) ___ 
mz 

m k* - k; ' 

+ (2.41 
J m 

zo8At (01 = jk c ~mt:mtOl - 
m k*-k; . 

I 

Consider two general cavities, A and B, coupled by 
the same hole, as shown in Fig. 2. 

Figure 2. 

The same analysis applies to cavity B and we have 

E Bz(0) = C e!=(O) 

e k2 - k; 

Je 
z. rtBt (0) = jk 1 get(O) ~ 

e k2 - k'e . 

(2.5) 

Here the summation indices m,e apply to cavity A and B 

respectively, and -2 is the outward normal to cavity B. 

In Fig. 3 we show the situation in the immediate 
vicinity of the hole. The surface integral in 
Eq. (2.3) will change if we subtract the fields 

(EBz + EAz)/2, dBt t Fh,)/2 in all space, which will 

result in a field configuration shown in Fig. 4, where 

E=(E -E AZ Br)/2 , rtt = (ftBt - at)/2 . The values of 

J m and Je are necessarily proportional to E and gt. 
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III. Evaluation of the Coupling Integral -- 

Consider the coupling integral 

Jm = dS;:.? 
H 

and expand grn(z) in a Taylor series in 2 to obtain 

IV. Magnetic Susceptibility and Electric Polarizability 

A. Magnetic Susceptibility 

H 
To analyze the problem with far field Hx = 1, 

HH = 0, we write the scalar magnetic potential as 
Y 

d b(3) e i=+l 
I 

(z $ 0) , (4.1) 

where 2 = VtrQ and D - ?k + ;! , 2 = ?x + Ty . By 

requiring continuity of *(t,z) at 2 = 0, we get an 
integral equation 

s 
d? g(?) K(?,:') = x (4.2) 

H 

in which 

1 d$ 1 
K(;t,?) = - 

4R2 
-G" 

znp-9 

(4.3) 

g(t) z HZ(x,y,O) , (4.4) 

A parallel analysis for the problem of Hf = 0, 
H H 
Y 

= 1 leads to the integral equation 

s dt' h(:') K(t,:') = y 
H 

(4.5) 

It is easy to show that an electrostatic approximation 
in which 

to tt(:) can be used in Jk to express it in terms of the 

electric dipole moment. In the term Jz, the time h(:) = HZbby,Ol (4.6) 

dependence of the fields is used to express it in terms 
of the magnetic dipole moment. In this way we obtain The magnetic susceptibility 8 is related to the 

function3 g(Z), h(;f) by the equations 

J = km xemz (3.3) 
m (01 E - jwp gmt(0) . $ . $t , 

* = xx d?xg(t) , J, = dty g(t) , 

in which x and 8 
I YX I 

are the electric polarizability and 
magnetic susceptibility of the hole. The definition of (4.7) 

x is ti = = 
XY I 

d;fxh(t) , @ 
YY s 

d;f y h(t) . 
I 

1 
x=E JI dxdy ‘Z'(X,Y) , (3.4) 

It is straightforward to show that 

where @(x,y) is the solution of the electrostatic 
* (4.8) 

problem with constant "far field" fE;f as shown in XY = *yLyx 

Fig. 4. Similarly, $ is defined by 
which means that $ can be diagonalized. If x,y are now 
the "diagonalized" axes, we have (Ir = JI = 0 and 

@xxHx + %yHy = SI 

! 

XY YX 
x dxdy HZ&y) , 

e = 
I 

d;fxg(?) , J, = 
(3.5) xx YY I 

dt y h(z) . (4.91 

3 H + vJyyHy = 
YX x J.f 

y dxdy HZ&y) r 
B. Electric Polarizability 

H 
where Hr(x,y) is the solution of the magnetostatic We write the electrostatic potential for E = 1 as 

problem with constant "far field" tit t. 
*tt, 21 = 1~1 + ,- d&) ei=+l a($) . (4.10) 

Requiring the continuity of Er(x,y,O) within the hole 

gives rise to the integral equation 

89 

PAC 1989



s d;t' f(P) iT(;',:dl = 1 , (4 11) 
H 

where 

1 
;;(t,:J, = - 

s 
d$ u e 

id. (2-Z' ) (4.12) 
4n2 

and 

f(t) s Q(x,y,O) (4.13) 

The electric polarizability x is related to f(s) by 

x= ss d: f(t) (4.14) 

C. Relation Between x and 9 ~_-- 

It can be shown that 

;;ct,3, = - v2, K(G,?') = -v2 K(:,:') (4.15) 
r 3 

is highly singular at 2 = 2'. As an attempt to repair 
this, Eq. (4.11) is written as 

d:' f(Z), V+’ v K(:,:‘) = 1 , 
r 9 

which would be satisfied by 

I d?' 2(:,?s, = ? ax t : By , 

(4.16) 

(4.17) 

with the condition a + B = 1. Integration of each 

component of Eq. (4.17) by parts and comparison with 
Eqs. (4.2) and (4.5) show that 

af(x,Y) afh,y) 
-= -ag(x,Y) I ~ = +h(x,y) . (4.18) ax ay 

use of Eq. (4.18) leads to 

x= dt f(:, =a d? g(2) = 6 
ss 

d: yh(:), (4.19) 

from which we find the general relation between x and $ 

-1 
Y = J--- t $ . (4.20) 

V. Examples 

Exact expressions have been obtained for the 
polartzability and susceptibility of an elliptical 
hole. These can be written as 

1 
-=- (5.1) 
x 

1 COS2(J COS2@ sin2* -l/2 
-=- 
3 

d$~------t- [ 1 2 xx a a b2 
, (5.2) 

1 sin2J, -l/2 
-=- 
3 dJI - , (5.3) 

YY b2 

where a and b are semi-major and semi-minor axes of the 
elliptical hole. The validity of Eq. (4.20) in this 
case is obvious. Corrsponding expressions can easily 
be obtained for a circular hole, where 

ti xx = coYY 
= 2% = 8a3/3 _ (5.4) 

For small holes of general shape, variational 
forms for $,, and II, can be used to obtain reasonably 

YY 
accurate susceptibilities with approximate values of 
g(:) and h(z). 

VI. SUNW.ry 

In this paper we showed in Section II that the 
fields inside a cavity with a hole can be written in 
terms of a coupling integral involving the tangential 
electric field in the plane of the hole. For a hole 
whose dimensions are small compared to the wavelength, 
this coupling integral was separated in Section III 
into an electric term, proportional to the (scalar) 
polarizability of the hole and a magnetic term 
proportional to the (vector) susceptibility of the 
hole. In Section IV we developed integral equations 
for the determination of these "static" geometrical 
parameters. These equations can be solved exactly for 
holes of circular and elliptical shape as shown in 5 
Section V, but only approximately for other shapes. 
Our main result is the derivation of what appears to be 
a new relation between the electric polarizability and 
the (diagonalized) magnetic susceptibility for a hole 
of general shape, namely 

-1 
x = *;: + $,; . (6.11 

This can be used to test the accuracy of various 
numerical methods which are used to calculate these 
parameters. 
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