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Introduction 

When an ultra-relativistic charge moves past a discontinu- 

ity in an accelerator vacuum chamber, electromagnetic fields 
are excited. A test charge following behind the exciting charge 

will, in general, experience a longitudinal kick (affecting its 
energy) and a transverse kick from these fields. The interac- 
tion can be characterized by the wakefield or the impedance of 

the structure. Either of these functions are useful for studying 
the current dependent behavior of a bunch of particles in an 

accelerator. 

It has long been possible to compute the longitudinal and 

transverse impedances of the periodic disk-loaded structure, 
1,2 

as well as the impedances of cylindrically symmetric cavities 

with arbitrary shape, up to the tube cut-off frequency. 3’4 More 

recently, the computation of the longitudinal impedance of sim- 

ple cavities5-’ and collimators, ‘I7 and of arbitrarily shaped 

cylindrically symmetric structures* has been demonstrated, 

including frequencies above cut-off. 

In Ref. 9 the method of field matching is used to calculate 

the transverse impedance of a simple, cylindrically symmetric‘, 

perfectly conducting cavity with long beam tubes. The struc- 

ture is divided into two subregions separated by a longitudi- 
nal cut. The fields are given as an expansion with unknown 
coefficients in the two subregions. The coefficients are then 

found by matching the fields along the cut. In the present pa- 
per field matching will also be used to compute the transverse 
impedance of simple structures. The subregions, however, will 
be separated by radial cuts, allowing us to consider the case of 
a simple collimator as well as that of the simple cavity. Fur- 
thermore, our cut allows the two beam tubes to have differing 

radii (See Fig. 1). 
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Fig. 1. Cylindrically symmetric structures considered 
in the present work: a) a cavity and b) a collimator. 

We will briefly describe our method and present some early 

results. More details will be forthcoming in a future paper. 

structure. Let the transverse position of the particle be at 

r = h and 0 = 0. The current density is then given as 

.&=~.L 
m=O 

=Z”rcs(r ~ h)h(z -. pet) 2 CO?.!?f 
(1) 

m=O 1 + bn1 ’ 

with ?irnO the Kronecker delta. The m = 0 term in the sum 
drives monopole modes, the m = 1 term drives dipole modes, 
etc. If the beam moves close to the structure axis the monopole 

modes dominate the longitudinal effect, whereas the dipole 
modes dominate the transverse effect. We limit our study here 
to the dipole modes, though the method that we use can easily 
be modified to calculate higher multipole modes. 

For calculating the transverse impedance we take as driving 
term the Fourier transform of the dipole component of j, 

co 

2, = 
/ 

jzl exp(ikct) dt 

=sS(r - h) cos 0 exp(ikz/P) , 

(2) 

with the wave number k = w/c. Once the resulting fields are 
known, the transverse impedance is given by 

1 O” 
~ 

“’ = Qhcos 0 / 
[,??‘, - p&r,] exp(-ikz/P) dz . (3) 
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Field Expansions 

The structures of interest to us are composed of simple 

cylindrical subregions that include the axis. In any such subre- 
gion e with pipe radius al, the Hertz potentials of the radiation 

fields excited by the point charge can, in general, be expanded 

into a series of cylindrical waves with unknown coefficients as 10 

fi,! = - cos e e .I1 (f$) [Cl, exp(-i&z) + Ce’, exp(ihz)] 

n 

fi:, = -sinDFJl(E$) [DFaexp(-iarnz) +DL+,exp(iaemz)]. 

n 

The propagation constants are given by 
(4) 

The Current Sources 

Consider an ultra-relativistic particle of charge Q moving 

at speed PC parallel to the z axis of a cylindrically symmetric 

* Work supported by the US Department of Energy, contract 
DE - AC03 - 76SF00515. 

XLn = 
Y2 

k2 - + 
% 

and oln = 
d 

k2-fi , 

4 
(5) 

with Y, and p,, representing the nth root of J1 and J: respec- 
tively. 

The coefficients for radiated waves moving in the positive 

z direction are Cz, DT, whereas those for waves moving in 
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the negative z direction are Cl, 0;. Thus, in subregion 1 of 
the cavity or collimator (see Fig. 1) all the former coefficients 
must be zero, while in subregion 3 all the latter coefficients are 
zero. Only in the middle subregion do we need all four sets of 
coefficients. Note that the propagation constants need to be 
defined with negative imaginary parts, to satisfy the Sommer- 
feld radiation condition. 

The Fourier transforms of the vector and scalar potentials 
are given by 

Ae = -ikfIfl+ V x tit + izFl(r) exp(ikz/P) cos 6 

i, = -V.&+ ~F~(r)exp(ikz/P)cosB , 

with 

(‘3) 

Fe(r) = 

h(T7)[Kl(Th) - rl(7.~)~l(~Qo/~l(~~L)] 7 5 h 

I~(Th)[K,(TT) - rl(rr)K1(Ta~)/I1(Ta~)] 7 > h, 

(‘1 

T = k//IT . (8) 

The last terms in Eq. (6) are the source terms. The functions 
II, Kr are the modified Bessel functions of the lst order. 

From the scalar and vector potentials we get the electric 
and magnetic fields of region ! in the usual manner. Note that 
the boundary conditions for a perfect conductor are automat- 
ically satisfied at T = al. 

Field Matching 

The cavities and collimators that we will consider can be 
decomposed into three simple cylindrical subregions (see Fig. 
1). In order to solve for the unknown coefficients in our field 
expansions we first match the four tangential field components 

& &, k, & at the boundaries between adjoining regions. 
In addition, E, and .?& are set to zero on a radial wall. We 
then eliminate r from these equations by performing a definite 
integration over r. 

For example, for the cavity of Fig. la, at z = -g/2 we set 

Erz, Eez = 
%I, EBL r < al 

0 al 5 i= 5 a2 
x _ I I 

Hr2, Hea = If,1 , Ha1 r < al 

Both sides of these equations are multiplied by Jr(v;r/ap)r2 dr 
and then integrated from r = 0 to r = ap, with p = 2 for the 
first two equations, p = 1 for the final two equations. The 
corresponding procedure is then applied at the boundary at 
2 = g/2. 

We are finally left with eight infinite sets of equations in- 

volving the eight sets of unknown coefficients C&, Dl,, C,, 
D&, C&, D&, C.&, D&. The problem can be written in matrix 
notation a.5 

Mx=b , (10) 

with M an infinite matrix, x and b vectors of infinite dimen- 
sion, with x representing the unknown coefficients. After trun- 
cating the matrix and vectors to finite size, Eq. (10) is solved 
numerically for x. 

Results 

Two computer codes have been written to calculate the 
transverse impedances of a simple cavity and a scraper at dis- 
crete values of k according to the method described above. Due 
to the memory limitation of our computer the sums in Eq. (4) 
are truncated at 50 terms. For the examples to be presented 
here, however, the impedance results remain essentially un- 
changed when only 20 terms are included in the computation. 
For simplicity, we restrict ourselves to the case of p = 1 in our 
examples. 

For our first example we give the impedance of a cavity 
with al = as, as/al = 6.58, g/al = 3.97. The imaginary part 
of 2, below the TEll cut-off frequency, kal = 1.84, is given 
in Fig. 2. Its value at the origin is -81 fi. The frequencies 
where ‘&n(Z,) changes abruptly from a large negative to a 
large positive value are the resonances. We have broken the 
curve at these points. The resonances are at kal = 0.58, 0.83, 
0.97, 1.06, 1.12, 1.30, 1.58, 1.65 and 1.69. These values agree 

with the results given by the computer code TRANSVRS.2 In 
this range, the real part of 2, is given by a sequence of delta 
functions, and thus cannot be found directly by our method. 
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Fig. 2. %z(Z,) below cut-off for a cavity with al = as, 
az/al = 6.58, g/al = 3.97. 

IRe(2,) above cut-off for this structure is given in Fig. 3. 

As in the longitudinal case5’7 we find a few sharp (but finite) 
peaks just above cut-off, in the present case at kal = 1.85 and 
2.04, with broader peaks ocurring at higher frequencies. 
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Fig. 3. Xe(.Z,) above cut-off for a cavity with al = us, 
a2/al = 6.58,g/al = 3.97. 

As a second example we give the dipole impedance of a 
single convolution of a rectangular bellows (See Fig. 4). The 
dimensions are al = as, us/ur = 1.212, g/al = 0.0667. As 

in the longitudinal case’ the impedance is dominated by one 
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large, somewhat broad resonance, centered above the lowest 
TM tube cut-off. The peak is centered at dial = 6.11; its 

maximum value is 11.75 R. Its position roughly agrees with’ 
k(az - al) = 7r/2, which yields kal = 7.4. The Q, defined as 
the central frequency divided by twice the full width at half 
maximum, is 5. Smaller peaks are found at kal = 3.88 and 
kal = 7.26, just above the first two TM1 tube cut-off frequen- 

cies, 3.83 and 7.02. The value of u1Stn(Z,(0)) is -0.74 n. 

For comparison, we have also used the computer code TBCI” 
to calculate the wakefield of a short Gaussian bunch, with 
bunch length (T* = 0.06~1, up to a distance of 12~1. Taking 
the Fast Fourier Transform of this function, then multiplying 
by exp(k2az/2) yields Z,. (We will denote this as the FFT 
method. For a discussion of this method, see for example Ref. 
12.) The results of this calculation are given as crosses in Fig. 
4. Although it is difficult to get high resolution by the FFT 
method, we see that the results of the two methods compare 
quite well. Possibly the only important difference is in the 
value of ul%m(Z,(O)). Here the FFT method yields -1.28 n. 
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Fig. 4. Sm(Z,) (top) and Xe(Z,) (bottom) for a single 
convolution of a bellows with al = us, uz/ul = 1.212, 

g/al = 0.0667. The crosses give the results of the FFT 
method for comparison. 

As a final example we give the dipole impedance of a single 

iris in a a tube. The dimensions are al = ~3, uz/ul = 0.281 and 
g/al = 0.122. The impedance for this obstruction is shown in 
Fig. 5. Two narrow peaks can be seen near the first two TM1 
cut-offs of the tube. One large resonance, at kul = 3.81, has 
a peak value of alWe = 14.61 kn and Q = 200. A smaller 
resonance, at kul = 7.015, h as a peak value of ul%e(Z,) = 
0.76 kn and Q = 700. Thus we see that a single iris can trap 
modes with very high Q values. In between these two narrow 
resonances we find a broad shoulder. The value of ul%m(Z,(O)) 
is -0.22 kR. 

We have again calculated the impedance by the FFT method, 
for comparison. The wakefield used was that of a bunch with 
length (J* = 0.1~1, computed out to 20~1. We have roughly 
twice the resolution of the previous example. On the whole, 
the results of the two methods agree. The FFT method yields a 

value of u~%rz(Z,(O)) = -0.19 n, comparing well with the field 
matching results. The FFT method, however, cannot resolve 
the very narrow resonance at kul = 7.01. The major discrepan- 
cies in the results are that, unlike the field matching method, 
the FFT method predicts a rather broad tail below the first 
resonance and a small, broad peak at kul = 5.73. 
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Fig. 5. %rz(Z,) (top) and %e(Z,) (bottom) for an iris 
in a tube with al = us, uz/ul = 0.281, g/al = 0.122. 
The peak value of ulXe(Z,) is 14.61 kn, centered at 
kul = 3.83. The crosses give the FFT results. 
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