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Abstract 

The usual conditions for achromaticity of a dispersive 
system are shown to be inadequate when space-charge 
effects are included. Using a matrix formulation de- 
scribing linear space-charge forces, we give generalized 
criteria necessary for a system to be achromatic. 
Additional1 
servation o P’ 

these conditions are necessary for con- 
transverse emittances. An example ofsuch a 

system is given. 
Introduction 

Desi ners 
reauire % 

of accelerator transport systems are 
to consider the oDtics of suace-charge-influenced 

beams (i.e., collections ot’ charged particle; transported 
under conditions such that the Coulomb forces between 
the particles are ap reciable compared to the applied 
confinement forces) or applications such as heavy-ion F 
fusion or neutron-s 

In the design o P 
allationsources. 
systems with negligible space charge, 

one has available a library of devices such as periodic 
lines, triplets, achromatic bends, etc., whose general 
properties are so well known that transport lines can often 
be constructed by an educated guess at the assemblage of 
devices necessary and subsequent optimization- by 
transport codes. Indeed, this nrocess has been carried out 
to se&d and third order. Th;! situation for space-charge- 
influenced systems is in a more primitive state, and the 
behavior or even appropriateness of zero-current devices 
to these situations is not well categorized in general. 
Although codes exist for the treatment of finite-current 
svstems. some with optimizers for the case of linear fields. 
the gendral guidance-afforded by known devices is missing 
and, hencq, the process of optimization is awkward. We 
are pursumg the analytical understanding of configu- 
rations useful in space-charge-dominated systems. Here 
we derive a straightforward but nonetheless useful 
algorithm for achromatization of linear devices. The usual 
conditions, vanishing of the matrix elements R,, and R,,, 
are shown to be insufficient. 

Linear Systems 

We make a distinction between two cases: (1) the 
anuroximation of linear self-fields is suficientlv adeauate 
to Ldescribe the system, and (2) 

I 
nonlinearities are 

important. Analogies between Case (1) and zero-current 
first-order transport are not qualitatively supportable 
because, for a given distribution of charge in a beam 
(except the spatially uniform distribution), nonlinearities 
will be present that are not known to be amenable to 
linearization by electromagnetic components. Nonethe- 
less, Case (1) has a wide range of applicability in practice, 
and useful statements may be made about the behavior of 
real beams. An important step was made in this respect 
by Sacherer,’ who showed that motion of the rms envelope 
is independent of beam distribution; hence, core evolution 
can be described by a linear model. This notion has been 
further exemplified and elaborated upon by Hofmann,2 
who also noted that focused beams tend to evolve toward 
uniform spatial distribution if the nonlinearities are not 
such as to provoke instability. Thus, despite the com- 
plexity of Case (2) beams, linear models are often 
applicable and it is encouraging to work toward conditions 
that promote linearity. In this paper, we treat beams that 
can be considered as belonging to Case (1). We also con- 
fine our remarks to systems that are symmetric about the 
l-5 (transverse-1ongitudinal)spatialplanes. 

*Work performed under the auspices of the U. S. Department of 
Energy and supported by the U S. Army Strategic Defense Command. 
TRocketdyne Division, Rockwell International, Canoga Park, 
California. 
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Matrix Elements 

One of the difficulties involved in studying even the 
linear space-charge case is the lack of symmetries that are 
present in the evolution of zero-current beams. In par- 
ticular, the longitudinal motion changes in a quasi- 
irreversible manner and affects the value of transverse 
matrix elements. In nondispersive systems, the coupling 
between longitudinal and transverse planes is implicit in 
that mixed matrix elements do not occur. However, in the 
dispersive case, explicit coupling does occur. This be- 
havior can be traced to the nature of the infinitesimal 
transformations that, when integrated, constitute the net 
transformation. 

Consider an infinitesimal length dl in a bend magnet. 
Omitting the 3-4 (y-y’) plane, which remains independent, 
the transformation through dl is 

where the left matrix is the transformation for a magnet of 
length dl and the ri 

f 
ht matrix is the space-charge kick 

with transverse and ongitudinal defocusing gradients h, 
and AZ, respectively. Here we designate the position and 
slope in the transverse plane by indices 1 and 2, 
respectively, the deviation of longitudinal displacement 
from the beam center by 5, and fractional momentum 
deviation by 6. Except for the resence of a 6-5 element in 
the right matrix, the P trans ormation would have no 
unusual properties but would simply integrate as a 
combined-function magnet. The presence of this element 
provides a fundamental change in the nature of the net 
transformation. Carrying out the integration (analytical 
evaluation is possible under special assumptions, but 
evaluation by a transport code yields the same results), 
the generic result is 

(2) 

Determinants of the transverse and longitudinal blocks 
are no longer unity as they would be in a nondispersive 
system, even with space charge. Without the longitudinal 
lens or without dispersive properties, the outlined 
elements 1-5, 2-5, 6-1, and 6-2 would be zero. In a non- 
dispersive system, the addition of space charge invokes a 
finite 6-5 element but changes the value of the 6-6 element 
to maintain the determinant of the longitudinal block at 
unity (with a consequent increase in the beam-energy 
spread). Additionally, the interplane elements are zero 
for a nondispersive system. 

These results are not affected by assumptions as to the 
form of the space-charge forces, requiring only linearity in 
dl. For exam le, inclusion of beam-,.vall interactions 
would change t l! e value of the matrix elements but would 
not alter the system linearity to first order. Additionally, 
it is not required that fields be produced by the beam; the 
form of the matrix in Eq. (2) would be more familiar were 
radio-fre uency cavities normally 
regions. 9r. his emphasizes the P 

laced in dispersive 
trans erence of time asym- 

metry to the transverse plane from the time-varying 
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longitudinal beam fields, similar to the case of an 
externally imposed time-varying field. 

Achromatization Conditions 

A test for the achromaticity of a system consists of 
transformation of every ray in the beam with inde 
ence of transverse coordinates on momentum. P 

end- 
or a 

transformation R, this is satisfied by the zero-current 
condition 

Rl6 = x26 = 0 . 

Consider, however, a transport line influenced by space 
charge with three sections and respective transformations 
R”, RI, and R2. Here, R’ contains dispersive elements and 
is of the form in Eq. (2) while R” and R* are nondispersive. 
The total transformation 

Rt = R2.R1.Ro 

has elements 

(4) 

R;,=R;,(R:,RO,+R;,RO,) +R;, (Rk5R; + R&R;) 

and 

(5) 

R:s=R~1(R:5R~+R:6R~)+R~(R~R~ + R;&J 6) 

The elements Ri6 and R& do not disappear whenonly Ri6 

and Rk are set, equal to zero. The condition for achromaticity 
in the presence of space charge is valid only when 

R,, = R,, = 0 

for the dispersive section in addition to the conditions in 
Eq. (3). Conditions in Eqs. (3) and (7) are then automat- 
ically satisfied for the total transformation. 

In zero-current systems, values of the elements in 
condition (3) are intimately associated with the values of 
elements 5-1 and 5-2 by relations depending on the system 
symmetries. These latter elements disappear identically 
as Eq. (3) is satisfied, corresponding to independence of 
ray-path length with initial transverse location or slope. 
With the addition of space charge, the achromatic 
conditions (3) and (7) are similarly and additionallylinked 
to elements 6-1 and 6-2; ray-momentum becomes 
independent, of transverse coordinates. In either case, the 
interplane blocks of the transformation matrix disappear, 
leaving explicitly uncoupled submatrices for the 
longitudinal and transverse planes with separate unity 
determinants. 

Emittance Growth 

We define the transverse emittance E by the usual 
relation 

E2 = 011022 - 0122 , (8) 

where the matrix u is the beam matrix that, under a 
transformation R, evolves as 

u’= R.o.RT. (9) 

In the absence of dispersion, the beam matrix consists 
of uncoupled transverse and longitudinal submatrices, 
independent of the presence of space charge. Upon 
transformation through a dispersive section, all elements 
(in general) attain nonzero values with or without space 
charge. Achromatization removes the coupled elements of 
the matrix. 

For non-space-charge systems, conservation of trans- 
verse emittance at a 
the unity value for t ci: 

‘ven momentum is a consequence of 
e determinant of the submatrices 

describing individual planes in R. If we expand the de- 
finition of Eq. (8) to include a range of momenta, e (in 
general) increases for passage through dispersive systems 
unless conditions (3) are satisfied. Similarly, when space 
charge is present, it can be shown by straightforward 
(although tedious) expansion of Eq. (8) that conditions (3) 
and (7) are requirements for a constant emittance. 
Consider a beam u with emittance c transformed by R to a 
beam u’ with emittance c’. Then 

c” = (R,,R,,u,~)(R~~R~~u~“) - (RlpR2pgJ2 . (10) 

If we let A, B, and C be the separately transformed 
elements oil, 0; and 0; 2 , which would be obtained in the 

uncoupledcase,e.g., 

A = R,,2u,l + 2R,,R,,~,, + R,22a22, 

then the transformed emittance becomes 

cl2 = (A + 2R,,R,,u,, + R&,, + R162u& 

03 + 2R,5R26~5s + R252~55 + R2,2Q (12) 

- Lc + (R15R2, + R,,R25) ‘56 + R,5R25a55 + R16R26a6632 . 

Thus, the condition for formal equality with the 
nondispersive case is identical to Eqs. (3) and (7). Because 
the determinants of the transformation for the individual 
planes are then unity, the transverse emittance remains 
constant. Similarly, conservation of the longitudinal 
emittance, defined analogously to Eq. (8), depends on the 
vanishing of the lower left-hand block of coupling 
elements in Eq. (21, a concomitant. result of Eqs. (3) and 
(7). Although emittance may grow in a given phase-space 
plane, the volume in four-dimensional space, of course, 
remains constant. This demonstration is 
tologous, because, by the formalism of mear-o tics, 

yFrhaps$?u- 

emittance conservation is a direct. consequence o the 
previous section’s results. It is interesting, however, to 
note from Eq. (12) that transverse emittance 
occur for an essentially monochromatic beam t rough the a 

owth can 

beam’s longitudinal extent, (G) if the system is not 
achromatized. 

An Example 

In the absence of more general criteria for the existence 
and attainment of conditions in Eqs. (3) and (7), we 
confine our discussion to a numerical example using the 
transport code TRACE 3-D.* This code features an op- 
timizer that operates in the presence of its linear space- 
charge algorithm. Our example, shown in Fig. 1, 
consists of a 50-MeV beam deflected throu h 75” by 
five equal-bend magnets of l-m radius. 4 ransverse 
confinement is provided by two quads of opposite sign 
between each bend, and the system has mirror symmetry 
about the midplane. Our procedure was to first find a 
symmetric achromat at zero current. Next, charge was 
introduced ( roviding a tune de ression of about 40%) and 
a matched & eam obtained. e/T e then constrained the 
y-beam to its matched value and locked the quads to 
midplane mirror symmetry. Requests for conditions in 
Eqs. (3) and 7) with the quads as variable produced the 
beam shown in Fig. 1. Fractional emittance growth was 
less than 10-3 with the much reduced interplanematrix 

*K.R. Crandall and R.S. Mills, “Trace 3-D Documentation,” Los 
Alamos National Laboratory report, to be published. 
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Fig. 1. Beamline confi uration and transverse envelopes 
for an achromatized lspersive transport system. The If 
matched solution (at full current) is also shown. 

elements obtained. For comparison, the same input beam, 
upon passage through one of the bends, suffered a 
36% emittance growth. Although the emittance growth 
through short nonachromatic regions may be small, larger 
increases will occur in subse uent transport because of 
residual dis ersion. 

K 
This will II e noted even for a drift, in 

contrast to t e zero-current case. 
The example serves to illustrate the general points 

previously raised. Additionally, evolution of the orig- 
inally symmetric solution upon charge addition was to 

maintain symmetry of the transverse forces by reducing 
beam size (hence, increasing s ace-charge defocusing) as 
the beam increased in longitu ma1 extent. A continuum cf! 
of alternative solutions is possible, corresponding to the 
degrees of freedom available in quad strengths and beam 
dimensions. The chosen solution is attractive because it 
confines the beam well and 

R 
reserves a nearly matched 

character. To assure that t e achromaticity conditions 
can be met with reasonable beam characteristics, it is 
necessary to provide an adequate number of degrees of 
freedom; sufficiently simple systems may not be even 
approximately achromatizable. An example of this, for 
which we have an analytic evaluation, is an impulsive 
quad placed between two short bends. This well-known 
system can meet condition (3) by adjustment of the quad, 
but can only meet condition (7) through disappearance of 
space-charge forces. 
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