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Abstract: A comparison has been made of the 
third-order (spherical) aberrations in magnetic 
quadrupole lenses for use in conventional charged 
particle beam transport systems. An analytical 
description of the aberrations is presented and this is 
compared with the results of high order numerical 
integration. The dependence of the aberration strength 
on the system geometry and focal length is given and a 
comparison of doublet and triplet sys terns made. The 
reduction of the aberrations in both doublet and 
triplet systems using embedded magnetic octupole lenses 
is also discussed and analytical predictions are given. 

Introduction 

The focusing properties of quadrupole lens 
systems have been studied for many years ]1,2,3,4,5l. 
As in the case of round lenses [6], the third-order 
aperture (spherical) aberrations cannot be eliminated 
by any combination of electrostatic and magnetic 
quadrupoles using nonrelativistic charged particle 
beams 131. It is possible to reduce or eliminate 
third-order aperture aberrations with certain 
combinations of quadrupoles and octupoles [l]. This 
paper will be restricted to consideration of magnetic 
quadrupole doublets and triplets and to correction of 
aperture aberrations with the addition of octupoles. 

Given the quadrupole and octupole gradient 
functions on the optic axis, it is relatively easy to 
compute the system aberrations. Unfortunately the 
correlation between system aberrations and simple lens 
parameters such as length, radius, and position is not 
obvious. The purpose of this paper is to provide the 
reader with some simple analytic approximations of 
quadrupole aberrations and octupole correction. These 
are intended to guide the system designer to nearly 
optimal lens configurations that suit the purpose. 
Once a general system configuration is established, 
specific computer modeling will complete the design. 

Linear Properties of Quadrupole Systems 

In this study, the z-axis of a Cartesian 
coordinate system is the optic axis of the lenses. The 
vacuum magnetic fields of the quadrupoles and octupoles 
are given by scalar 
respectively 

magnetic potentials VG and V. 

B = -VVC - VVo . (1) 

When q and p are the charge and magnitude of momentum 
for a particle, the magnetic scalar potentials are 
written as follows 

(q/p)Vo = -xy$(z) + xy(x2 + y2$‘/12 + .a* (2) 

(q/p)Vo = -xy(x2 - y2) $13 + ... . (3) 

*Work performed under the auspices of the US Department 
of Energy and supported by the US Army Strategic 
Defense Command. 
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The equations of motion are formed as power 
series expansions of x and y and their derivatives with 
respect to z, designated by primes. When only the 
linear terms are retained, one has the paraxial 
equations 

I I 
X + -+(z)x = 0, y” - #$z)y = 0 . (4) 

Let us consider an optical system where the 
object is at zo, the lenses 
aperture plane at za and 

are between z. and the 
the image is at z.. 

characteristic functions are solutions of Eq. (i, 2: 
satisfy the following initial conditions 

h x0 =hyo ’ ’ 0 = IT,,= gyo= 

hko= hGo= gx, = gyo = 1 . (5) 

Any paraxial solution is now defined as follows 

x(z) = ahx(z) + xogx(z), y(z) = BhV(z) + yogy(z) .(6) 

where a = xi,and 6 = yi. By definition, an image plane 
is one in w rch 

hxi = h . = 0, 
Yl 

g xi = Mx, gyi = My (7) 

where M, and M 
T 

are the system magnification in the x 
and y coordina es respectively. 

Aperture Aberrations 

The complete equations of motion are 
expressed by the paraxial equations, Eq. (41, 
nonlinear 

plus 
series expansions on the right-hand side of 

each equation. When the first additional term, 
third-order, is added to each equation, one gets the 
following solution for particles coming from a point 
near the optic axis at z. [3,7], 

‘i = (x1x)x, + (xlaaa)a3 + (x]abb>c@2 

= Mx(xo + Cloc3 + C2ag2) (8) 

yi c (YIY)Y, + (ylbbb)B3 + (ylaab)a2B 

= My(yo + DIB 3 2 + D2a 6). 
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The off axis aberrations such as coma, astigmatism, and 
distortion have been left out, consistent with the 
assumption of having x0 and y, small. The three 
independent aperture aberration coefficients can be 
reduced to the following integrals 

‘i 
Cl = J 1 hk4/6 + (.$ + w)h;/3 dz , =, 1 

‘i 
c2 = D2 = J [ 1.5h;’ h;* + ($2 - *)h; 

20 

h; dz ,(9) 1 
q = hG4/6 + (02 + +)hy4/3 dz . 1 

The positive definite form of these coefficients for 
quadrupoles alone [3] makes it necessary to u s e 
octupoles in combination with quadrupoles to achieve 
complete correction of third-order aperture 
aberrations[l]. 

There have been several formal optimization 
studies of quadrupole octupole systems [5,8,9] with the 
intended applications being in electron microscopy. 
This discussion is limited to simpler systems with more 
general applications. 

Analytic Models 

In this section, doublets and symmetric 
triplets are considered. Both the x and y trajectories 
have a common object plane at z. and are focused to a 
virtual image at infinity. 

Doublets: The doublet is illustrated in 
Fig. 1. The lenses are positioned at L and L2 and are 
of lengths P 1 and Q2 respectively. Tt+ eir center to 
center separation is d and the object to aperture 
length is L. 

The quadrupole gradient function is taken to 
be either zero or +n where n denotes the lens. Unlike 
round lenses, a sudden j uw in $(z) is permissti:e 
because derivatives of $ do not appear in Eq. . 
Using the following definition, 

F xn 3 - Fyn = l/(&Q,) , (10) 

it can be shown that the focal lengths of the 
individual lenses are 

* 

20 

~ --L,---- 
FI--- .-- 

~--I-“- ~~~ .- L,. .-___. j rl 
-m-L- ~-- 

Fig. 1. Schematic description of a quadrupole doublet. 

f x,yn , * Fx yn 111 - ~nw9x,yn)l . (11) 

Subscripts x,yn refer to either the x or y coordinates. 
The total focal length of the system in each 

coordinate is given by the formula 

l/f, y = l/f, yl + l/f, y2 - d/(f, yl fx,y2) (12) t t 

After some algebra, one gets the following approximate 
results 

l/2 
F x2 = - 

{ 1 
dL2 1 - (L,Q,/L, + P2)/(6d) II (13) 

F xl = - Ex2 Ll’L2 (14) 

f 
XYY 

= Ll/(l - d/fx,y2) (15) 

Using Eqs. (9)--(15), the aperture aberration 
coefficients of a doublet are approximated by 

Cl = [Ll + (fx - L,)4/d3]/6 

+ [ Lf/(Q lfx12) + fx4/(9 2fx22) 113 

C2 = D2 = 1.5[Ll + (fx - LlJ2(fy - L,)2/d3] (16) 

+ L14mlfxlfyl) + f, 2fy2/(P 2fx2fy2) 

D1 = IL1 + (fy - L,)4/d3]/6 

+[L14/(Q lfyl 2) 4 fy4 :(n2t,22H/3* 

The focal lengths and aperture aberration 
coefficients of several doublets were computed 
analytically using Eqs. (lo)--(16) and numerically 
using the codes MARYLIE [lo] and GIOS [ll]. These 
examples are presented in Table I with the numerical 
results in parenthesis. When the quadrupole lens 
lengths are equal, and the doublet takes up no more 
than 50% of L, the analytic approximations are in 
excellent agreement with the precise numerical results. 
If the quadrupoles are short and unequal in length, the 
agreement is still good. 
different, and 

When P 1 and P2 are very 
the doublet takes up 50% of L, as the 

last case in Table I, there can be a larger error in Cl 
or Dl. In this instance Dl was overestimated by 60%. 

Triplet: Although it would be possible to 
derive a set of relationships similar to Eqs. 
(lo)--(16) for triplets, the procedure would be quite 
tedious. The doublet relationships can be used to 
represent a triplet quite well. Let us form a tr-iplet 
by combining two mirror-image doublets. 
nearest the object is designated by 

‘fhe doublet 
( ) and its 

parameters are given in terms of the triplet as follows 

9; L Ql = Q3, P; E Q2/2, d* t d - Q2/4 (17) 

For the purpose of the aberration calculation we define 

L; * Ll i L2, L; z L; + d*, Li E 2L2 . (18) 
1765 
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Tke variabies designated by (*) are used to compute CT, 

% and D2' then the triplet aberrations and focal 
lengths are given by 

Cl = C;/8, C2 f D2 = C;/8 , 

Dl = D;/8, f, = fy = L2 (19) 

As an example, a triplet in arbitrary units with Ll = 
20.75, L2 = 23.5, L3 = 26.25, PI = P - 1.5, and Q2 = 3 
has analytic and (numerical) aberration coefficients of 
Cl = 2280 (2550), C = D 
Dl = 6110 (5580) with 2foca z 

= 10 50: - (10,600) and 

and f 
leniths f, = 23.5 (24.7) 

Y 
= 23.5 (22.8). 

An intriguing result of this exercise is that 
a triplet focused to infinity can be turned into a 
doublet by turning off the central quadrupole, changing 
the sign of one of the end lenses and slightly 
readjusting their strengths. 
triplet, 

If P2 = 291 
this change from a triplet to a 

= 2P3 in the 
doublet will 

reduce the aperture aberrations by about a factor of 2. 
The doublet will have somewhat more asymmetric values 
of Cl and D2. 

Octupole Aberration Correction 

A thorough mathematical treatment of octupole 
aberration correction is beyond the scope of this 
paper i however, one does exist in Ref. 191. Careful 
study of Eq. (9) leads to the following summary. 
There must be at least three octupoles ideally centered 
at zb, zc and Zd to completely correct third-order 
aperture aberrations. For minimum strength octupoles, 
the following inequalities must be maximized. 

(h&J; > (hx/hy$ > (hx/hy$ . (20) 

The signs of $(z,) and @(z,) will be negative and +(z,) 
positive. 

The success of correction depends on having 
large asymmetries in hx and h . For example, a triplet 
is more nearly symmetric yhan a doublet. It can be 
shown that the triplet described in the previous 
section requires about eight times more octupole 
strength to correct than the corresponding doublet. 

Conclusion 

In this brief discussion we have considered 
quadrupole doublets and symmetric triplets that focus 
trajectories from a point object to infinity. Analytic 
approximations were derived for the system focal 
lengths and aperture aberration coefficients. When the 
quadrupole lengths, Q n, and separation d are very small 
compared to the object to aperture distance, L, the 

aperture aberr tion 
!I 

coefficients are 
proportional to L /(Q,d). 

roughly 

takes up a 
If the doublet or triplet 

significant fraction of L (**OX), form 
&;;orssL;;;;;nt in Eqs. (lo)--(19) substantially alter 

A separate study using the code 
GENMAP [12] has indicated that realistic lenses with a 
pole tip radius r, that satisfies rn 2 P, will have 
aperture aberrations about half as big as those 
from the “boxcar” fields in this paper. 

coming 

triplet 
It is observed in this paper that although a 

is aesthetically symmetric, it will have about 
twice as much aperture aberration as a comparably sized 
doublet. 
that 

Also, such a triplet will require octupoles 
are about eight times as strong as the 

corresponding doublet. 
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TABLE I 

EXAMPLES OF ANALYTICALLY AND (N~II~ERIcALLY) OBTAINED FOCAL LENGTHS AND 
APERTURE ABERRATION COEFFICIENTS FOR DOUBLETS 

Ll k2 Ql Q2 5 fY Cl 

Cm) Cm) (m) Cm) Cm) Cm) (ml 

17.5 19.5 1 1 12.8 26.6 1440 
(12.8) (26.6) (1390) 

15.5 19.5 1 1 10.4 29.1 472 
(10.4) (29.0) (456) 

15 19 2 2 9.80 29.3 228 
(9.81) (29.2) (212) 

14 19 4 2 8.68 32.4 82.4 
(8.70) (31.2) (74.9) 

13 19 6 2 7.66 36.7 35.4 
(7.73) (33.3) (35.3) 
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C2’02 
Cm) 

Dl 
Cm) 

7620 6340 
(7510) (6130) 
2730 3770 

(2710) (3640) 
1480 2180 

(1430) (2020) 
932 2630 

(848) (2120) 
706 3830 

(610) (2380) 
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