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1 Separatrix: a definition. 

lt is hnrd to find a satisfactory answer to thp qurstlon, ‘What is a reso- 
nance?” A typical response is to characterize resonances by frequency-space 
rondltions of thr form, 

rn,“, +mzvz t . ..+n.v,i n-0, (1) 

for integral ml mp and n. This definition is correct, but it ignores what 
should be thp central feature of a resonance: its separalriz. The utility of a 
scparatrix is that it globally organizes the dynamics, enabling simultaneous 
visualization of all the orbits and their relationships. If resonances are the 
building blocks of instability, then the separatrix is its mechanism. Neverthe- 
Icss, establishing thp concept of II separatrix for higher dimensional systems 
is not completely trivial. Consider, for example, Sturrock’s conclusion that 
thr lirst order (1,2) srxtupolc resonance possesses unbounded orbits that 
pass arbitrarily close to the (phase space) origin, rxn error that was corrected 
recently by Ohnuma.[6,8] Such anomalous behavior would require that the 
resonance not even poasesa a separatrix. 

The situation is confused further by the way that resonances appear in 
pwturbative calculations, where they quickly becorn? enmeshed in questions 
of convergence via the “small denominator” problem. This almost suggests 
t,hat a ~PSOORTICP has more to do with thr way things are calculated than with 
real, physical phenomena-the sort of (equally false?) feeling one sometimes 
gets about renormalization in quantum field theory. To offset this we em- 
phasize that R separatrix is a topological property of a. vector field. No 
continuous transformation of phase space, whether constructed perturba- 
tively or inspired by God, can deform the orbits so as to make this property 
disappear. That is why a perturbation expansion which ignores resonances 
while seeking to bring a Hamiltonian into normal form must fail (globally and 
almost always).’ Small d.wominators are not the real problem but only its 
manifestation within the context of prrturbation theory. The real problem 
is that we are attempting something fundamentally impossible. 

To get 8 better feeling for our question and for what is required of an sn- 
swer. consider thP following thought experiment. Suppose that you are given 
B one-to-one symplrctic mapping, F, defined over some four-dimensional 
pha.w space and realized in an unspecified system of coordinates. (Think 
of F, for cxamplr, as a tracking program that models the PoincarC map of 
a 2: degree of freedom Hamiltonian system.) Starting from any number 
of points in phase space, you can calculate forward or backward iterates of 
F infinitely quirkly. Further, you have unlimited capabilities for displaying 
these orbits on a four-dimensional graphics terminal. Given even these ex- 
traordinary tools, how would you test the simple hypothesis: ‘This system 
exhibits a first order (1,2) sextupole resonance”? What topological features 
of the separatrix must be reflected in the “data” in order to confirm or deny 
such a statement? 

Thrrp is not enough space in B short paper like this to present B full analysis 
of this problem. We shall short-circuit the process and simply assert what is 
needed to define the separatrix of an integrably resonant dynamical system 
on B grncral Pp-dimensional phase space; a more thorough discussion is being 
written.[5] (In what follows, the word “orbit” refers to the set of images and 
preimages of a phase space point under the action of F; if P is some point 
in phase space. then the ‘orbit through P” is the set lJ~z_,(F”(P)}.) 

ASSERTIONS: 

1. At the highest level of structure, there is a way of slicing 2p-dimensional 
phase space along disjoint (p t I)-dimensional adiabatically invariant 
sub-manifolds. (This may amount to little more than restating integra- 
bility, which requires that there be p invariants in involution. One of 
these 1s a IIamlltonian; the other p 1 label the invariant manifolds.) 
We shall call these slices Uleaves.“2 The invariance property meant that 

‘Opernt~d by the \lnivcreities Rcwarrh Asaoci~tion, Inc. underrantract with the II S. 
Ibpartmcnt or Enrrw 

‘Evrn so, the first few low-order terms of an asymptotic series which in- 
rludes wsonanrrs may contain useful information on the macroscopic strut- 
tore of th? flow.[2,4] 

>An extraordinary examplr of dividing a spare into lower dimrnsmnal 
manifolds can be found in A Saulkin, “R3 is the IJnion of Disjoint Circles,” 
Amerirnn Mathemntzrnl Monthly 90(9),640 (1983). 
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each orbit is contained within a single leaf. 

At the next level of structure, almost all bounded orbits lie on p-tori 
(p-dimensional tori). (Arnold’s theorem) 

A special class of “resonant orbits” lie on a finite set of N-periodic 
(p-l)-tori, for some N. By saying a (p-- I)-torus, TP ‘, is N-periodic we 
mean that TP-’ is invariant under FN ( FN: iP ’ --+ TP 1 ), Joining 
together the TP-’ from all the leaves produces (2~ ~ 2)-dimensional 
‘tubes” of resonant orbits. 

Each T’-’ that is unstable forms 8 cluster set for R set of orbits lying 
on zero-measure, p-dimensional manifolds. In modern terminology, they 
are the ‘alpha and omega limit sets” of thew orbits, whose manifolds 
generalize the “stable” and “unstable” manifolds which are attached to 
fixed points. We shall risk abusing the terminology and call them by 
the same name. 

The “separatrix” is the union of all the stable and unstable manifolds 
along with the periodic tori to which they arc attarhpd. It is therefore R 
(2~ ~ I)-dimensional surface, and it partitions the Zp-dimensional phase 
space, thereby serving to organize the dynamics 

The topological description of a particular resonance consists of listing the 
periodic tori, the TP-‘, and describing how the branches of the srparatrix 
connect them together. Testing B hypothesis, such as th? one given abow, 
consists of finding these structurw in the system of inter?41. 

Of course, knowing what to look for is not the SB~P as knowing how to find 
it. In two-dimensional phase spaces, in N-periodic 0-tort15 is simply a fixed 
point of the iterated mapping FN, and any fixed point algorithm employing 
Newton’s method (gradient search) will usually lorate it. (Of course, you 
must choose a good starting point and somehow spwify t.hs appropriate N, 
but once that is done, the algorithm converges rapidly.) In contrast t,o this 
happy situation, there is no general purpose proredurp for finding highw 
dimensional periodic tori. The difficulty is that Hamiltoninn systems are 
symplectic: in II sense, resonant orbits are attractors. but the measure of 
their boain of cttroction is zero. Think of Newton’s method (~9 a replacement 
rule that substitutes B contract& mapping for a given one in such a way 
that an attractor of the former is a fixed point of thr latter. &xs a aim&r 
rule eziat for higher dimensional resononcesf We pose this a,s R 

PROBLEM: Given a. symplectic map, F, does thprp exist a dissipative 
mapping, G, constructible from F, such that attract.nrs of G are pwiodic 
tori of F? 

2 Separatrix: an example. 

To illustrate all of this, we shall draw the separatrix for the* first order (1, 2) 
sextupole resonance. Visualizing II four-dimensional figure like this is a little 
involved, but not impossible. One method is to takr B sequence of three- 
dimensional slices, much as one would present a cubr to R twwdimrnsional 
creature by slicing it from bottom to top Of course. we must take some care 
in arranging the slices; our two-dimensional friend would form a distorted 
concept of a cube were it presented sliced along a diagonal. We shall obtain 
II good representation of the four-dimensional dynamics by drawing the sep- 
aratrix within each three-dimensional leaf of Assertion 1 and observing its 
bifurcations aa we pass through the leaves. 

The model Hamiltonian, defined over a punctured phase space, is 

H = VIII t o,I, + gl, ltzrz ros(& + 2&x + ne t d) 

II and I2 are amplitude variables conjugate to the phase variables & and 
&; B is the independent variable; the numbers g and 6 are function& of the 
sextupole distribution.(31 By a canonical transformation WP can define new 
coordinates 

JI = (I, t Z&)/S 

Jz = (211 -~ I,)/5 

f1 .: 61 t 26, t ne + I$ 

(2 - 261 - 62 (2) 
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Figure 1. Projected slices of 11 four-dimensional (I, 2) separatrix 

for which the Hamiltonian function, K, is given by 

K = J,A+ JzN&‘Izcos& (3) 

where A G v, + 2~ + n and I’ z 20 1 - ~2, It is expected that A is a small 
quantity. Indeed, for this Hamiltonian to be at all interesting A must be 
small enough 90 that JIA is comparrtble in magnitude to the resonant term. 
Ez does not appear in K, which means that (a) the invariant tori run parallel 
to [z and (b) J2 is invariant and can label the leaves. The Hamiltonian Ilow, 
projected along &, is given by the vector field 

Jl = gI:“Iz sin 6 

El = A c gI,@( ii2 + 21,) co9 <, (4) 

Resonant orbits of K are projected into fixed points of Eq.s(4). We shall call 
“regular” those resonant orbits for which sin& = 0 and ‘Irregular” those 
for which either II = 0 or I, = 0. 

Symmetries of the projected flow will allow us to confine our attention 
to the parameter quadrant: A > 0, g > 0 Clearly, if we simultaneously 
change the sign of both these quantities, th? llow simply changes direction. 
Changing the sign of 9 alone can be compensated for by the transformation 
(I + tI + *. Finally, changing the sign of A alone amounts to performing 
both previous transformations in succession. 

In fact, 8s is characteristic of sextupole interactions, there we really no 
essential parameters in the problem: both A and 9 can be made to vanish 
by a simple scaling transformation. Let us drfine n 5 A/g, and scale the 
amplitude variables by IC’. 

il,z = J,,zI~= il,z F I,,z/n’ 

Then the level sets--which determine the topology of the flow-- of the func- 
tion 

K G g2(K Jzl,r)/A’ = j, + i:“iz cos <I 

are identical to those of K. Further, K can act &s a. true Hamiltonian for 
the scaled variables provided we simultaneously rescale B .-+ BA3/g2. 

The wpnratrix is sketched in Figure 1. Each frame shows its intrrarct,ion 
with a single three-dimensional Jz leaf projected along the Ez dirwtion onto 
the ((1, J,) plane. A few points should be kept in mind while scanning these 
pictures. First, the Et axis corresponds not to J1 - 0 but to J1 ~ 252 
(II = 0), when Jz < 0, and to J, = ;Jz (I2 : 0), when ,I2 > 0. Second, 
the dynamlcal range of t1 1s Ba: we are viewing only on+third of the full 
projection; each picture is repeated twice. Third, remember that a ‘fixed 
point’ in thr diagram is the projection of a period-three l-torus, a closed 

Except for the irregular resonant orbits pinned on I, 7 0 and 1.~ - 0. 
the (1,2) resonance possesses no bounded orbits on thr lraves for which 
Jz < -II? or &I? < Jz, whereas between t.hese leaves bounded orbits fill so 
some volume of phase space. This is the general behavior of all resonanws. 
except the quadrupole resonances for which all orbits arr either bounded or 
unbounded: the region of bounded orbits slowly shrinks as the resonance is 
approached. One quantitative measure of this approach to global instability 
is the yresonance width.” Ohnuma has pointed out that this term has been 
used in a variety of imprecise ways by different authorn.[7] Vaguely speaking, 
it refers to the size of the smallest strip in tune space which is centered on thr 
resonance line, Eq.(l), and outside of which a beam is stable. This drfinitiou 
remains ambiguous, because it depends on the size and shape of the hram 

as well as on the experimental setup-- P g , on whethrr the resonance iq 
approached adiabatically or the beam is suddenly injwt,ed into the rrsonanl 
situation. In order to avoid beam paramet,ws rntirrly, WP shall aasoriatc, nn 
“adiabatic resonance width” with each individual orbit. That, is, we imaglnr 
initializing an orbit in phase spaw with rontrol parameters art far From 
resonance, then approaching the resonanrr vrry slowly, and finally no(ing 

when the orbit becomes unbounded. 
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curve corresponds to B l-torus, and an open (unbounded) curve corresponds 
to a tw-dimensional surface. 

We now describe the separatrix: [a) For Jz large and negative all or1Gt.s 
are unbounded except the irregular resonant orbits, which are pinned to 
to the surface II = 0 at phases e, c- --t?r/Z. (b) As Jz increases, a local 
bifurcation, or catastrophe, occurs on the leaf Jz = - & IC*. It is heralded by 
the appearance of a new branch of the separatrix connected non-transversally 
(forming a cusp) to a S-periodic I-torus. (c) That torus splits, and for 
-LK’ < Ja < -As” there is a single class of bounded orbits. (d) A 
g&11 bifurcation, II saddle-switch, occurs on the leaf Jz = - ,$I?. At this 
precise value, the surface II = 0 is stable for phases that we 2x-equivalent 
to the range s/2 < E, < 3?r/2. On the Iraves -&t? < J2 < 0 thrrr are 
two classes of bounded orbits. The first, say Class A, is BS beforc and is 

characterized by a bounded phase, ~12 c {I < 3rrj2. The second, Class I), 
has an unboundedly increasing phase t. (A better way of saying thiw Clnna 
A orbits lie on S-periodic a-tori, while Class B orbits lie on invariant ‘L-tori. 
Or: the underlying invariant manifold of R Class A orbit is disconnrctrd.) 
The entire surface II = 0 is now locally stable. (e) For 0 < Jz < ,:K” 
the Class A orbits have disappeared; Class B orbits are still bounded. (f) 
When &I?? i Jz Class FJ has disappeared BS well. All orbits are once mow 
unbounded, except the two unpinned irregular resonant orbits in the planr 
I, = 0 which begin at <I = I at Jz = AK” and (g) wander to El ,- ?n!‘Z as 
Jz ----t co. 

3 Adiabatic resonance widths. 
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Figure 2. Resonance width master curve 

For the (I, 2) resonanrp of our example this mean3 beginning with c ra co 
and letting n .-+ 0 on a. time scale much greater than max(l/vl, l/v*). At 
n 7 03 all orbits are harmonic oscillator orbits, the variables II, Iz, Jr and 
Jz are ronsrrwd separately, and we can label an orbit with any two of the 
four initial values, Iin, Iin, J;” and J;“.’ According to the usual adiabatic 
theorems the variation of an orbit as n: approaches aero will be regulated by 
the adiabatic invariance of the action integrals.[l] Because Jz is B constant of 
motion for Gxed K, we can take Jz 2 & f Jzd& itself as the iirst adiabatic 
invariant. To the second we attach the symbol A z $ Jld.f,, whose value is 
A’” = f35TJ;“. 

Whn,t. happens to an orbit as n slowly decreases depends critically on 
the sign of J;“. For .I;- > 0 the diagrams of Figure le-g are the relevt~nt 
ones, and WP now must think of them as flow diagrams for the projected 
Hamiltoninn (see Eq.(3)) rather th an mapping diagrams of the function P’. 
As K dprreases thp wparatrix pushes downward. Each orbit remains on its 
Iraf, Jz - J;“, 11 maintains its value of A, and it crosses the separatrix, thus 
bproming unbounded, when the area under the separatrix has dwreased to 
A’“. 

For J;” i 0 the situation is much more interesting, as the separatrix 
contains two branches. Figures (la-e) are now the relevant ones, but they 
must be traversed in reverse order. As n decreases from 00 the upper branch 
pushes downward, as before, but simultaneously a bubble, representing the 
lower branch of the separatrix, forms and begins to grow. As these two 
branches grow closer, approaching their merger at the saddle-switch (K” = 

-405;“), orbits either are captured by the island or pass through the upper 
branrh, &pending on their values for A’“. The total area under the saddle- 
switch is A, (15 + 33n/4)Jjn. If A’” > A. the orbit passes through 
thr upper branch of the separatrix; if A’” < A,, then it is captured by 
and subwqwntly leaks through the lower branch. If thP latter happens, A 
undergoes a discontinuous change upon passag? through the separatrix, since 
only one of the thrw islands can capture thP orbit. (Remember, the period 
3 proprrty rpfcrs to th* phase space mapping, not the transformed Row.) As 
c conlinues to decreaw, the orbit will retain its new value for A as thr island 
lifts and shrinks Event u~lly -at some point before n2 --: --305;” the island 
becomes too small to contain the orbit. 

E’lgure 2 contains a “master curve,” drawn in the normalized (j;“,j;“) 
coordinat.rs, which uses this xwario to assign resonance widths to individual 
orbIts. Thr curve was romputpd by numerically integrat,ing the area under 
the uppw branch of thP separatrix when -l/40 < I; < l/IO and within the 
island when I/30 i jz < -l/40. It is used in the following way. Suppose 
on? starts an orbit at n z 00 with initml amplitude variables 1;” and 1;“. 
To find the value of n at which the orbit becomes unbounded, first calculate 
J;” and J;“, wing Eq.s(2), and take their ratio. The intersection of the ray 
jin/j;n c Ji”,‘J;” with the “master curve” is now read OR: call that point 
(j;“‘, A”‘). Th e value of x at which the orbit becomes unbounded is 

Ice tlTJ;-;j;nc 

For B given resonant coupling, the adiabatic resonance width of the orbit is 
then drtrrmined according to 2A : 2gn. 

“B+xauw the system is lrnear for n = 03 WP can legitimately associate ri” 
and I;” with the initial horizontal and vertical emittances divided by 2rr.131 

A more dynamic picture is obtained by removing the I/K~ normaliza- 
tion: the curve of Figure 2 would be no longer static but sweep through the 
(I;“, Ii”) space, converging on the origin as n approaches aero and making 
orbits unbounded as it passes their initial conditions. 
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