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1. INTRODUCTION 

The Stanford Linear Collider (SLC) is the first linear collider 

to be 

built. The repetition rate of a linear colEder is much lower 

than 

that of a circular colIider. TO recover the luminosity, the 
emittance and beam size at coIlision point have to be one or 

two 

orders of magnitude smalIer than s conventiond collider. 
Therefore, for the SLC, the smalI beam emittance created &om 

the 

damping ring has to be kept small by aH possible means to 
preetve the luminosity potential for the physics experiment. 

To minimize emittance growth of eIectron and poaitron 

be- 

in the SLC Arcs, bending magneta with very strong 
quadrupole components have to be used. In addition, a sex- 

tupole 

component is  included to eliminate the aecond order chrw 

matic 

and geometric aberrations. Consequently, in the prsenee 

of 

magnet misalignments, both orbit error and optical distortion 

can 

be generated. This report will concentrate on the genera- 

tion 

and correction of orbit errors. The optical distortions are 
treated in another paper in this conference.' 

Our malyais is applicable to any periodic Iattice structure 

with 

periodic arrangement of beam monitors and correctors. 

The 

unique feature of SLC Arcs is that the orbit errors are cor- 

rected 

by moving magnets. We wiIl establish a general stability 
criterion for the orbit correction in Sec. 2. In Sec. 3, the r m  

orbit 

errors and corrector strengths will be calculated. FinaIly, 

in 

Sec. 4, the formulation will be applied to the design of SLC 

to 

obtain estimates for residua1 orbit distortion after correction. 

2. STABILITY CRZTERXON 

Consider a transport line which cansistB of periodic cells. Let 

the 

beam position monitors and the orbit correctors be located 

with 

the same period as the celIi and let the BPM's and the 
corrector distributions interlace each other as shown in Fig. 1. 

BPM Corrector 8PM Corrector 0PM 

Fig.  1. Periodic array of monitors and correctors in a 
periodic Iattice. 

Consider the n-kth cell in the transport line. Let m o m  in 

this 

cell be such that they produce an orbit displacement en and 

angle e; 

at the end of the cell where the n-th BPM is located. 

The 

orbit at  the entrance to the n-th cell has been corrected so 

;hat 

it has a zero displacement with an error in angle 
At this point, we leave the type of orbit co~ectors opmnr 

?xcept that its strength in the n-th cell will be specified by Dm. 

rhe 

orbit at the end of the n-th cell is then given by 
vhere 

T is the 2 x 2 tramfer matrix €or the cell, d and & are 

he 

orbit responses to the corrector at the end of the cell. 
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If the corrector ir represented 88 a short dipole kick, then 
Dm is the kick angle and d, d" arc the 12- and 22- eIementa of the 
transfer matrix from the corrector to the monitor. 

Eq. (I) can be rewritten as two equations 

2, = tlazl,-l+ Can, + en , Pa) 
d, = ~ z z Z I ~ - ~  + $DA + e: . (16) 

The correctar strength D,  is determined by the candition that 
zsp = Q. This give, using Eq. (la), 

Substituting into Eq. (lb), then gives the ax le  at the exit 
of the n-th cell 

x:, = Ax:-, + s, (4 
W h e  

( 4 4  

Equation (3), showing the angular divergence of the orbit at the 
BPM's after orbit correction, contains two terms. The first term 
comea from the propagation of the raiduaI angular divergence 
upstream of the cell under consideration. The second term is 
the noise contribution from errors in the cell. Furthermore, the 
first term is "damped" by the factor A per cell (when 1 A I < 1). 
As a result the orbit, containing a damping on the one hand and 
a noise an the other hand, as a balance between those two terms 
will acquire an equiIibrium value. 

It is instructive to apply the results to the case when the 
corrector is a &function kick. We have 

Dn = kick angle , 

where the subscripts c and m refer to the corrector and monitor 
loeatiom, respectively; $J is the phase advance from corrector to 
monitor. In addition, we have 

t12 = Om sin , ( 6 4  
t22 = cm &II - am sin W) 

where 
and (6) into (4a), the cwfficient A is found to be 

is the phase advance per cell. Subatituting Eq. (5) 
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The coefficient A pIayB the role of a ndamping em- Compared with Eq. (91, the r m  orbit has a q u h d  another 
stant." Note that Eq. (7) is independent of the &functions. term proportional to (A8}. To obtain a feeling far the caeffcient 
A strong damping (which is preferred) requires A closer to 0. K, consider the case of a J-fMCtiOII corrector. we have 
This is achieved if - $ (the phase advance from monitar to 

corrector to the next monitor) is away from a multiple of r. For 
instance, one optimum arrangement Ls to have 90' celk and to 
have the correctors immediately downstream of the monitors, 
which is a very common practice. 

The figure of merit indicating the quality of orbit correction which gives 
is the rms orbit slope. at the BPM's. Ag mentioned,before, this 

(134 t 2 1 =  -- (1 + dm) sin '~bcen , 

t 1 1 =  COB &I + am sin &U , P> 

corrector) or a multiple of 'K and if $ (the phase advance from 1 
Bm 

0 4 )  rms value is determind by the balance between a damping effect 
and a noise diffusion effect. From Eq. (3), we have 

x=---. . 1 sin 4c*u 
&a ail?+ 

Squaring the quantity and taking the expectation VaIUe, assun- 
ing no correlations among errors in different cella, we obtain 

{z") = (B') (1 +A2 + A' -t :. .) 

The orbit correction scheme breaks down if 1 A 12 1. What h a p  
pens then is that the orbit dope at tke BPMb continue to grow 
as shown in Fig. 2. 

To minimize the effect of BPM errom, we have to make 
Ka/(l - A2) as small an pwsible. This requirement is not the 
same as the previous requirement that I A I ahould be minimized. 
Depending an the magnitude of the BPM errors, therefore, same 
compromise h a  to be made. For example, if the corrector is 
immediately downstream of the monitor and t,h& = 90' BS the 
example we mentioned before, we have A = 0 and Eq. (U) reads 

The corrector strength in the absence of BPM errors is given 
by Eq. (2). If the BPM errors are included, the rms corrector 
strength is found ta be 

2-07 Sb64A2 where (d2} is given by Eq. (11) and 

Fig. 2. Divergent orbit with incrking angL error if A > 1, 

Equation (9) gives the value of (2") at the BPM's once A 
and {B') are known. It is clear that to keep the rms orbit 1 4 1 ,  
w e  need to make A nat too close to 1 and to keep (E') small. 

To obtain an expression for (sa}, we need to h o w  the poe- 
sible sources of errors. Let the k-th ~ E O I  have strength Dk and 
its orbit at the end of the cell be e = Wkdk and ef = &dL. Then 
we have 

where the summation is over all pmsible sources of error in one 
cell. Note that if the error source is the same as that used aa the 
corrector, it does not contribute to orbit error after correction 
since d = dk and d' = d i .  

3. RMS OFtBKT EaROItS 
CO.RRECTOR STRENGTHS 

So far we have assumed that the orbit dkplacements at the 
BPM's me perfectly corrected. This will not be the case if the 
BPM reading have an rms error A. To include this'efkt, a more 
complicated calculation similar to that' of the previous .section 
is carried out. The result is  that instead of Eq. (9) we have 

where 

4. APPLICATXON TO SLC ARCS 

A cell in the SLC Arc consists of two magnets, In this section 
we consider horizontal orbit correction with the arrangement 
shown in Fig. 3. The corrector is  assumed to be moving the 
F-magnets horizontalIy.a The corrector strength D is chosen to 
be the amount of movement (in pm). The relevant parameters 
in the SLC design3 are 

The coefficient A is then found from Eq. (48) to be 

A = -0.196 

6 
d (12) Fig. 3. SLC Arc orbit correctian scheme. F-magnet serves as 

corrector in horizontal plane. 
K = t 2 r  - -{til - A) . 
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The orbit errors are assumed to come from magnet mis- 
alignments. The misalignment of the F magnet (which is the 
corrector) does not contribute to orbit error after correction. 
The misalignment of the D magnet gives, using Eq. (lo), 

(BZ):(Dz)(db-;dD)2 . (17) 

Again using 2nd order TURTLE, we find 

dD = 1.702 , db = 1.573 . 

If the rms magnet misalignment is (D2)‘i2 = 100 l&m, we have 
from Eq. (17) 

(B’)‘/’ = 50.84 prad . 

Substituting the values of A and (B2) into Eq. (9) gives 

(z’~)~/~ = 51.85 prad . (18) 

The orbit angle calculated above should be rather accurate. 
To translate it into a rough estimate of the orbit, note that the 
orbit has been corrected to zero at the monitor so that maxi- 
mum orbit displacement tends to occur at the center of the D- 
magnets. Transferring (z”)lj2 to the orbit in the D-magnets 
gives an orbit of 103.07 pm. A similar transfer gives an orbit of 
59.6 pm and 79.3 pm at the center of the F-magnet and the gap 
between the two magnets, respectively. If we take the rms orbit 
to be the rms of the orbit at the BPM, the F and D magnets, 
and the gap, we obtain 

(2)1/Z = 71.5 pm . (19) 

To take into account the BPM errors, we use Eq. (11). Sub- 
stituting the values into Eq. (12) yields 

K = -0.241 . 

If we assume (A2)‘/2 = 100 pm, then 

(z’~)~/* = 84.68 prad . (20) 

The rms orbit error due to this (#)1/Z is about 116.8 lrn. On 
top of this, there is a contribution from the BPM misalignments. 
Adding the contributions together gives an rms orbit error of 

(2)‘j2 = 153.7 pm . (21) 

Comparing Eqs. (19) and (21), it is clear the BPM errors 
contribute significantly to the Arc orbit correction and must be 
taken into consideration. Furthermore, Eq. (21) shows that for 
100 pm rms misalignment and 100 pm BPM error, the resultant 
rms orbit error is about 150 pm which are used in Ref. 1 to 
estimate the optical perturbations. 

To find the rms corrector strength, one can use Eq. (16). 
The result is 

(@or,) ‘/’ = 121.34 pm 

for the needed rms magnet movements. This number becomes 
110.65 pm if there are no BPM errors. The movement dou- 
bles if magnets are moved with one end fixed. The results of 
orbit errors and corrector strength after orbit correction are 
summarized in Table I. 

Table I. Horizontal orbit error with 100 pm misalignments 
after corrections. 

{:(f;: 

(Dcorrh,,s 

BPM Error = 0 

51.9 prad 
71.5 pm 

110.7 pm 

BPM Error = 100 pm 

84.7 prad 
153.7 pm 

121.34 pm 

As a comparison, one might ask what if the D magnets are 
used as the horizontal correctors? Such a correction scheme does 
not work at all. Because then the damping factor A = -1.337 
and the corrected orbit diverges as shown in Fig. 2. However, 
for the vertical orbit correction, the D magnets will be moved 
instead of the F magnets. Due to the symmetry between vertical 
and horizontal lattices, the vertical orbit error after correction 
should be smilar to that of the horizontal orbit. 

Here we only discuss the case of random misalignments. The 
case of systematic misalignments or energy errors have been 
studied by T. Fieguth4 and M. Sands.5 Actual commissioning 
experiences on the perturbations and corrections of the orbits 
in North Arc are discussed in another paper presented at this 
Conference.6 
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