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Abstract 

Emittance growth results due to accelerating gaps, 
and magnetic field gaps in induction accelerators. The 
analytic technique previously used to study electric 
field induced emittance growth for immersed source 
beams [1] is extended to include solenoid fringing 
field effects in the present work. These results have 
application to industrial induction accelerators and 
to high brightness Free Electron Laser drivers. 

Introduction 

Emittance growth in accelerators is an important 
problem in a variety of areas including Free Electron 
Lasers (FELs) , and radiation effects simulators. To 
the extent that emittance growth leads to beam loss, 
it is also an important problem in commercial accel- 
erators _ Electron induction accelerators use solenoids 
to focus high current (-kA) beams, and the periodic 
nonuniform fields intrinsically associated with the 
insulated gaps in the accelerating structure give rise 
to a periodic magnetic field perturbation. 

A formalism for accurately calculating the trans- 
verse velocity growth due to the electric fields in 
accelerating gaps was previously developed 121. In 
this paper, we extend this formalism to magnetic field 
perturbations and to beams from shielded sources. We 
note that the type of transverse perturbation we 
describe can be compensated by placing a tunable beam 
optical element in each gap; however, we presume that 
this is not the case and that phase space filamenta- 
tion and phase mix damping will lead to effective 
emittance growth. 

The analysis gives results most relevant to low 
energy beams, since in the limit that the gap width 
is comparable to the focusing length k -1 = pc2/eB, 
the lens effects differ markedly from a non-solenoidal 
system. 

Intuitively, these effects are understood by 
examining the dynamics of an electron from a shielded 
source as it traverses a long accelerating gap as 
shown in Fig. 1. We have chosen the case of reson- 
ance 2R = nk-1 with an electric field for illustra- 
tion. The magnetic field resonance is analogous. 
In the solenoidal field case (solid line), the gap 
electric field imparts an inward radial impulse to 
the electron as it enters the gap. It then rotates 
in the magnetic field to the point where the par- 
ticle 1s moving outward as it receives an outward 
iIllpulSe, so that the two effects add. The dashed 
line in Fig. 1 shows the case of an electron with 
no solenoidal focusing, and in this case, the 
electron is simply accelerated inward and then out- 
ward again with little or no net transverse velocity 
imparted to it. Solenoidal focusing has clearly led 
to a serious effect which must be corrected by a de- 
focusing lense at the output of each gap. The effect 
of a radial magnetic is analogous to a radial electric 
field in this case. In this work we wish to evaluate 
these effects for axial maqnetic field variations 
for both shielded and immersed sources. 
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Fig. 1. Illustration of dynamical 
variables showing the 
difference between cases 
with (solid) and without 
solenoidal focusing. 

Model 

We consider the transverse particle equation of 
motion, and the conservation of cannonical angular 
momentum Pe as the starting point in our work, and 
we will use cgs units 

ym;: = -e[(Er - firB,)l+ BBBz : 

p0 
= ymrBe - er2B/2c2 

where r is the radial position, Y is the relativistic 
factor and E,, Be and B, are the radial electric, 
azimuthal magnetic and axial magnetic fields. For 
simplicity, we assume that?; is small, and that 
the beam radius is approximately constant over the 
radial electric field variation or axial magnetic 
field variation of interest. This is equivalent to 
saying that re,'c << r, and this assumption must be 
evaluated on a case by case basis. We assume that 
i- = 0 in equilibrium, an d that x is the radial per- 
turbation away from equilibrium, so we find the fol- 
lowing equations of motion: 

x + (2/4)x = -rocb'A1c/2 ; L) = e?/ y mi (la) c shielded source 

.. 2 -r-h! 6w 

x ' 'Acx = 
c B variable, immersed (lb) 

2 ; source 

where h : eB/ymc, and &u 
c is the change in (ti result- 

C c 
ing from rhe change in B. Equations (11 are all 
solved by fourier transform where 

x = ,r=B(k) sin kz dz. 
-m 

and we assume that the magnetic yerturbinq functions 
are antisymmetric around the edge of the qal' (a = 71. 

1359 (‘~~~3X~-~~‘Xi/()o(nt- Ii59 $ I .cn, cc IEEE 

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987



By fourier transform techniques, we find the solu- 
tion under the assum tion that we have a single gap 
over the interval [Z P < L where B = B,(l + A sin kcz), 

k9 =, lT/L, and A is the magnitude of the fundamental 
fourier series harmonic of the magnetic field. EO?C 
simplicity we also restrict ourselves to particles for 
which fi " landsetk =wc/c. c 

We find that: 

sin(k 
x 9 

- kJ2)L 

r cos kcz/2 k 
9 - kc/2 

- sin(k 
9 

+ kc/2)L 

kg + kc/2 1 
for shielded sources (24 

Ak sin(k x =c 9 
- kc)L 

r cos kc2 2 k 
9 - kc 

- sin(k 
g 

+ kJL 

kg + kc I 

for immersed sources (2b) 

Various aspects of this solution are of interest. For 
example note that, as one might expect, the maximum 
values are observed when k,/2(k,) - k 
(immersed) sources so that the partic es 9 

for shielded 
are in reso- 

nance with the field. For practical problems, kc 
varies and we add the values of x and x' for each gap 
while correcting for energy variations and position. 

The normalized single gap perturbation as a 
function of k,L is given in Fig. 2. We see that for 
long wavelengths, kc L -f 0 and that the resonance 
problem is somewhat worse for immersed source beams 
than for shielded source beams. Near resonance, how- 
ever, the situation is reversed, and shielded source 
beams can undergo large, growing oscillations. Note 
that when k,L < 2n (shielded) or Tl (immersed), these 
oscillations are different from the oscillations which 
result as the beam particles "follow" magnetic field 
lines since the wavelength is much longer than the 
field period. In resonance, the oscillations are 
distinguished in that the amplitude of x grows without 
bound. 
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The long wavelength (k,L < 1) case is of great 
interest for high energies. In this limit we find: 

Ak3L3r 
x = --%-- cos (kc/2)z 

2 
71 

(3a) 

x = 2Ak3L3r 
c 

2 
cos kcz 

7: 
(3b) 

As an example, for B = 2kG, y = 10 and L = 15 cm, and 
A = -1, we find x = .07 r, and x' = xk,/2 = 4 x 10e3. 
For a .5 cm radius beam, this results in a minimum 
normalized emittance growth of 20 TIIIIR cm. 

Another example is in the design of an industrial 
accelerator where emittance is not important, but 

'2eam loss is. The PSI industrial accelerator has 
oarameters y = 3, L = 8 cm, B = 1 kG, and r = 1 cm 
so that x = .3BA, or x & 1.7 nnn/gap for A = .5. If, 
however, we segment the field coil so that it has 
twice the periodicity (L + 4 cm) we can drop the field 
induced ripple per gap a factor of 8. 

\ 

Conclusion 

We have developed simple expressions to evaluate 
the effect of rippled magnetic fields in solenoidal 
focusing systems. These expressions are useful in 
a variety of contexts including Free Electron Lasers 
(FELS) and in designing industrial accelerators. 
This work was supported by the Department of Energy 
under Contract No. DE-AC03-86ER80238.501. 
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Fig. 2. Relative scaled transverse 
perturbation as a function 
of KcL. 
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