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1. Summary 

The design of the SLC Final Focus System has evolved from 
its initial conceptual design Is2 into its final form. This final 
design is described including a review of the critical decisions 
infiuencing the adoption of particular features. The creation of 
a feasible design has required that these decisions be tempered 
by practical considerations such as site constraints, correction 
of optical errors caused by imperfections, and accommodations 
requested by engineers and particle detector physicists. As this 
is the first suchsystem to be built, it is hoped that the experience 
gained will be useful for the design of future systems. 

2. Introduction 

The pa.rt of the SLC between the ends of the arcs and the 
Interaction Poii:t (IP) are called the Final Focus Systems (FFS). 
Overall, the funciions of the FFS are to trarisform the beams at 
the ends of the arc>: so as to form dispersion-free, round beams 
at the I.P. This 1’ order beam size is optinlized to yield the 
maximum possible Illrni!io?ity luhen the effecis of various per- 
iurbal,ions anti aberrations have been accounted for and when 
lzt a::d Znd order optical correcticns have been applied. Site 
limitations req;iired that, lcrlgt11 co.;servillg measures be ta.ken. 

The FFS for electrolls agd positro:>s are essentially the same: 
each consistin;< of foilr s~!hs~~Stemc BE, indicated in Fig. 1. 
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Fig. 1. Schematic of the SLC Final Focus System. 
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The functions of these subsystems are as follows: 

THE FINAL FOCUS BEND (FFB) 

Removes dispersion which at the ends of the Arcs is given 
by qz = 0.0474m and qY = ak = 7: = 0 . 

Transfers the Arc beams (with /3, = 8.70 m /?, = 1.14 m 
and (Y~,~ =: 0) to the next subsystem with a transfer matrix 
equal to the negative identity matrix. 
Provides a large, achromatic bend needed to satisfy global 
geometry constraints. 

Provides quad/skew-quad pairs separated in phase by - 
7i/2 to remove the accumulated anomalous dispersion at 
the IP due to perturbations in the Arcs and FFS. 

TIIE INITTAL TRANSFORMER (IT) 

l Initiates demagnifica.tion, and provides a round beam, 
with ,& = 0.12 m and (Y,,~ =- 0, to the next subsystem. 

l Provides trims on the two last quadrupoles to adjust al,, 
at the IP. 

l Provides a region where the e+, e ~ pathlength difference 
was adjusted. 

TIIE CIIRGhlA'I‘IC CORRECTION SYSTEM (CCS) 

s Corrects the donlinant 2”d order chromatic aberrations at 
the IP withoilt significantly introducing others. 

. Provides s bend geometry to reduce synchrotron radiation 
(SR) background in the particle detector. 

. Provides space for a low field soft bend magnet to further 
reduce SR background. 

THE FINAL TRANSFORMER (FT) 

Completes the demagnification process. The magnification 
in this transformer is the same in the z and y planes, so 
that at the IP the ideal beam is round, with an optimum 
,9& = 0.0075 m and CX~,~ = 0. 

Allows independent adjustment of the axial position of 
the beam waists to match the position of temporal 
coincidence at the IP. This is done by trimming QDSB 
and QF3 quadrupoles (see Fig. 1). 

Provides a skew quad for suppression of cross-plane cou- 
pling between z, y’ and z’, y at the IP. 

Details of the FT Design 

This is the most critical subsystem of the FFS in terms of 
sensitivity to chromatic aberrations, misalignments and other 
errors. Described below is the procedure that led to the adopted 
design. It is based on the attractive symmetries that occur when 
symmetric quadrupole triplets are used as building blocks. A 
basic optical model was adopted consisting of two quarterwave 
sections in series which form a halfwave transform with a diag- 
onal transfer matrix given by the equation: 

0 F2w 0 %Y = 
-1/F&,, 0 I( -l/FL,, 0 

-K,y 0 

0 --l/K,, 
(1) 
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where M, = F2,/Flz and My = F2,/Fl, . For the SLC 

M, = My = M (2) 

Consider the quarterwave section nearest the IP (see Fig. 1). It 
consists of a close-packed symmetric triplet with equal drifts, 
e*, on both ends. This close-packed feature was adopted to con- 
serve overall length which is of special significance in the final 
transformer where the 2nd order chromatic aberrations, Tlzs and 
T346, are very large each with a magnitude approximately equal 
to the overall length of the unredueed configuration (defined be- 
low). The center quadrupole is split in half longitudinally to 
avoid impractical length/bore ratios. All four quadrupoles have 
the same bore and pole tip field, to utilize the maximum prac- 
tical gradient and to permit powering them in series. 

The minimumvalue for the drift C’ between the downstream 
face of QFl and the IP depends on the particle detector require- 
ments. For conventional quadrupoles and the MKII detector, e* 
must be > 2.8 m for QFl to clear the stray field of the detector 
solenoid. For this value of e* it is estimated that a quadrupole 
bore radius of about 2 cm is required to clear both the charged 
and neutral components of a fully disrupted beam. In turn, 
a maximum allowable pole tip field, conservatively chosen as 
10 kg for conventional quadrupoles, determines the maximum 
common field gradient of the triplet magnets. 

Leaving e* and the common gradient fixed, and taking ad- 
vantage of the chosen fore/aft symmetry, two free parameters 
(the equal lengths of QFl and QF3 and the equal lengths of the 
QD2’s) are sufficient to generate the desired quarterwavesection 
with length L. 

Now, consider the upstream quarterwave section. Scaling 
the quarterwave section just found (all lengths by l/M and 
the common gradient by M2) and combining the two sections 
satisfies Eq. (1). With l/M - 4 or 5, however, this leads to 
an excessive overall length and excessive lengths of individual 
quadrupoles. We will refer to this as the unreduced configura- 
tion with overall length L, given by, 

L, = 1+& Lz 
( > 

50 m . 

Steps are now taken to reduce these lengths to practical values: 
. The quadrupole lengths are decreased by scaling the com- 

mon gradient by an arbitrary factor which results in 
quadrupole lengths comparable to those in the down- 
stream section. A four-fold adjustment is made using the 
lengths of QF4, QF6 and QDSA,B and the drifts D2,,d 
and D3 to satisfy Eq. (1). This maneuver has no effect on 
overall length. 

l With a diagonal overall transfer matrix as given in Eq. (l), 
the foci can be moved in a coordinated fashion as follows 
with no eflect on the overall laf order transfer mat& 

A.!?* (downstream) = -M2 AD2, (upstream) . (4) 

With 02, decreased in this way, the overall length is de- 
creased by (l/M2 - 1) A.!*, where l/M N 4 or 5. It is de- 
sirable, however, to leave e* fixed and compensate AD2, an- 
other way. An approximate, procedure is to adjust the lengths 
of QF1,3 and QD2A,B and QF4,6 and QD5A,B with the same 
result except for the appearance of non-zero matrix elements 
Rzl and R43 in the overall transfer matrix (this deviates from 
the telescopic condition which was initially chosen to minimize 
chromatic aberrations). These matrix elements are very small 
(- 0.1 m-‘) with no significant effect on the FT performance. 
Similarly, simultaneous reductions of drifts D2,, D2d and 03 
can be approximately compensated in the same fashion. 

The overall length of the FT is thus reduced to an accept- 
able value LFT w 38m which still leaves space for a “soft” bend 
magnet, corrector dipoles, instruments and other required hard- 
ware. The drift 03 is chosen so that QF4,6 and QD5A,B become 
identical. 

The Need for Chromatic Correction 

It has been found using computer simulations that the only 
significant aberrations in the FT are those represented by the 
Znd order matrix elements Tl26 and Ts4s. In the FT these terms 
are both almost equal to L, to within about lo%, or 

TIz6 = T346 Z L, = (1 + $) L 

where L, the length of the quarterwave section nearest to the 
IP, has been uniquely determined by practical constraints. 

The significance of these aberrations may be evaluated in 
terms of an “ideal” luminosity given by 

(6) 

where N is the number of particles per pulse in each beam, f is 
the pulse repetition rate and a,oY is a measure of the transverse 
beam size at the IP. 

With an unaberrated ideal beam entering the FT & = par = 

P, a, = cly = 0 and cZ = fY = e ) we include the effect of the 
aberrations in the expression uZuY by writing 

u,u’y z (z?) FJ (YZ) = [M’P+ (1+~)ZC%,P] e (7) 

where 06 is the rms momentum spread of the beam. This equa- 
tion as a function of M (with p constant) has a minimum when 

&-Ts P 
M2 =G 

with a corresponding /?’ at the IP given by 

p’ = M2p = Lo&m . 

Then, for the following optimistic parameter values: 

p = 0.12 m , L = 10.7 m , 

N = 5 x 10” , f = 180 Hz , 

UC4 = 2 x 1o-3 ) and E = 3 x lop3 rad-m 

(8) 

(9) 

the optimum value of M would be 

M = 0.46 with p’ = 0.026 m , (10) 

and the expected luminosity becomes, 

c maz = 2.3 x 102’ cmp2 - set-’ (11) 

A design value for L: that is this low is unacceptable and shows 
the need to correct these 2nd order chromatic aberrations. 
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Design of the CCS 

The need to correct the unavoidable 2nd order aberrations 
inherent in the FT led to the introduction of the CCS. This chro- 
matic correction section, just upstream of the FT is designed to 
introduce regions of dispersion where sextupoles can be used to 
cancel the overall Trze and Tad6 matrix elements for the com- 
bined FT and CCS. 

The optical model adopted for the CCS is that of a modified 
Second Order AchromaP (SOA) consisting of four cells with 
an overall unit magnification. These cells are identical to each 
other with respect to quadrupole and sextupole components. 
The quadrupoles are placed to form geometrically symmetric 
doublets with equal strengths of opposing sign. 

The two sextupoles in each cell are also identical in strength 
and placement to those in the other cells. This ensures that 
the 2nd order geometric aberrations from the sextupoles will be 
cancelled overall. In principle, only those sextupoles separated 
by the negative of the identity matrix (i.e., ldt-3rd and 2”d- 

4rh cells) need be identical. The sextupoles are placed as close 
to the quadrupoles as practically possible to maximize their re- 
spective coupling to the Trze and T34e matrix elements and are 
separated by only an intervening drift to reduce sensitivity to 
misalignment. The strengths of the two sextupole families are 
now increased from the values for an SOA thus introducing aber- 
rations in the CCS which will cancel those in the FT. Thus for 
an FT magnification of hl it can be shown that, 

Tns) overall = Tn&. - M K26)ccs = 0 (12) 

T346) overall = T346>, - M T346)CCs = 0 (13) 

In addition to increasing the sextupole strengths, the CCS 
achromat is further modified by longitudinal displacement of 
the dipole components. For a true SOA, there are identical 
bends in each cell. However, this places some bends in regions 
where both p and dispersion are large. Such placement leads to 
severe emittance growth caused by quantum fluctuations in the 
synchrotron energy loss. To mitigate this effect, all bends are 
located near the foci of the CCS lattice as shown in Fig. 1. 

A second reason for this placement stems from the 2nd or- 
der optics: because we have now deviated from a true SOA it 
becomes necessary to deal with the chromatic matrix elements 
Tl66 and T366 in the CCS. It can be shown that if the dispersion 
is made to be identical in the first and second halves of the CCS. 
1.e.. sequentially symmetric, these matrix elements will vanish: 
In the CCS the elective bend centers must coincide with the 
foci. Deviations of only a few centimeters will result in signifi- 
cant values for Tl66 and T366 with resulting loss of luminosity. 

Suppression of emittance growth due to quantum fluctua- 
tions requires that bend strengths should be minimized. How- 
ever, the sextupole strengths vary inversely with bend strength 
and are limited by a maximum practical value or the onset of 
higher order geometric aberrations. At full SLC energy, the 
strongest sextupoles are near the maximum practical strength. 
For this case loss of luminosity due to quantum fluctuations in 
the CCS bends alone is - 15 %. 

Third Order Considerations 

The adopted disposition of sextupoles in the SLC CCS is 
the best that could be found which satisfies all of the foregoing 
criteria, and at the same time minimizes the dominant residual 

3’d order chromatic aberrations, Tr26e and 2’3466, which limit the 
ultimate luminosity that can be achieved. The loss of luminosity 
due to these aberrations is - 20% for a momentum spread of 
ug = 0.5 percent. The largest residual 3rd order geometric aber- 
rations Tl224 and T3442 cause a corresponding loss of - 10%. 

The origin of the residual 3rd order chromatic aberrations is 
interesting and suggestive of a procedure to reduce them. One of 
us (KLB) has shown that the overall 2”d and 3rd order chromatic 
aberrations are related to the intrinsic aberrations of the FT and 
CCS as follows, 

Tl266),,,,,~~ = T1266)~~ + T’&TT226)CCS 

+ T&TT&cs - MT1266)CCS 

7-3466)ove,all = T3466)FT + T346)~~T446)CCs 

+ T336)FTfi46)CC. - MT3466)CC~ 

14) 

15) 

When the sextupoles are powered in a two-family configu- 
ration and adjusted so that Tr2s)ovcrall and T346)oueraII vanish, 
the 3’d order residuals, Tr2@j)overall and Ts4ec),,“er&, do not van- 
ish. In fact, they are significant and limit the momentum ac- 
ceptance of the system. The dominant contributions come from 

the znd order products, Tl26)FT T226)CCS and T346)FT T44e)ccs, 

and not from the intrinsic grd order terms. This suggests that 
with the sextupoles powered in a four-family configuration and 
adjusted so that T226)CCS and T446)ccs as well a.~ Tl26)oucrall 

and T341~L~11 vanish, the 3’d order residuals might be sup- 
pressed. Suppression factors as large as 5 have been observed in 
computer simulations but at the expense of excessive sextupole 
strengths and a significant increase of 3rd order geometric aber- 
rations. So-this procedure has been of no practical value to 
our present design. 

Conclusions 

The final design of the FFS is both practical and shown to 
be effective in eliminating Znd order aberrations. Other luminos- 
ity degrading effects still remain, namely, 3rd order chromatic 
and geometric aberrations, emittance growth due to quantum 
fluctuations, and the effects of component misalignment and 
fabrication errors. 

We believe that within the framework of our optical model 
a compromise has been achieved which minimizes sensitivity 
to these effects. For a perfect beam entering the FFS with 
the following parameters: E = 50 GeV, u6 = 5 x 10m3, 
E = 3 x lo-lo rad-m, f = 180 Hz and N = 5 x 10” parti- 
cles/pulse in each beam (with perfect register and no pinch) 
residual aberrations and quantum fluctuations contribute more 
or less equally and limit the luminosity to - 1 x 103’ cmm2 
- see-I. If reasonable construction tolerances are met and 
lSf order optical corrections are successfully applied the effect of 
errors could be negligible. 
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